Трансмембранный транспорт веществ. Биологические мембраны. Строение биологических мембран

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия - проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Na-/ К--насос в клетках животных, активно выкачивающих ионы Na+ наружу, поглощая при этом ионы К- Благодаря этому в клетке поддерживается большая концентрация К- и меньшая Na+ по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ. В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg2-и Са2+. мембрана клетка диффузия ионный

В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нуклеотиды, аминокислоты.

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоцитозе (эндо … - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впячивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, - экзоцитоз (экзо … - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

  • · барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • · транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов. Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • · матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • · механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • · энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • · рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • · ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • · осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

· маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Первично активный транспорт - это перенос отдельных ионов во­преки концентрационному и электрическому градиентам с помощью специальных ионных насосов, а также с помощью эндоцитоза, экзоцитоза и трансцитоза. В обоих случаях энергия расхо­дуется непосредственно на перенос частиц.

Насосы (помпы) представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Не­посредственным источником энергии явля­ется АТФ. Достаточно хорошо изучены Na/К-, Са 2+ - и Н + -насосы. Есть основания предполагать наличие Сl - -насоса, о чем сви­детельствует участие ионов Сl - в процессах торможения ЦНС, а также в возникновении возбуждения в клетках проводящей системы сердца и в клетках рабочего миокарда. Отсут­ствие хлорной помпы привело бы к исчезно­вению концентрационного градиента ионов Сl - в перечисленных клетках и нарушению процессов возбуждения и торможения в них, чего в реальной действительности не наблю­дается. Насосы локализуются на клеточных мембранах или на мембранах клеточных органелл.

Основными характеристи­ками мембранных насосов являются:

Специфичность (селективность);

Постоянная работа;

Специфичность насосов (селективность) заключается в том, что они обычно переносят какой-то оп­ределенный ион или два иона. Например, Na/К-насос (объединенный насос для Nа + и К +) не способен переносить ион лития, хотя по своим свойствам последний очень близок к натрию.

Натрий-калиевый насос (Nа/К-АТФаза ) - это интегральный белок клеточной мембра­ны, обладающий, как и все другие насосы, свойствами фермента, т.е. сам переносчик обеспечивает расщепление АТФ и освобож­дение энергии, которую он же сам и исполь­зует. Этот насос изучен наиболее хорошо, он имеется в мембранах всех клеток и создает характерный признак живого - градиент концентрации Nа+ и К+ внутри и вне клетки, что обеспечивает формирование мембранно­го потенциала и вторичный транспорт ве­ществ. Главными активаторами насоса явля­ются гормоны (альдостерон, тироксин), не­достаток энергии (кислородное голодание) ингибирует насос. Его специфическими блокаторами являются строфантины, особенно уабаин. Работа натриевого насоса после уда­ления К+ из среды сильно нарушается.

Кальциевый насос (Са 2+ -АТФаза) локализу­ется в саркоплазматическом ретикулуме мы­шечной ткани, в эндоплазматическом рети­кулуме других клеток, клеточной мембране. Насос обеспечивает транспорт Сa2+ и строго контролирует содержание Са2+ в клетке, по­скольку изменение содержания Са2+ в ней нарушает функцию. Насос переносит Са2+ либо во внеклеточную среду, например, в клетках сердечной и скелетных мышц, либо в цистерны ретикулума и митохондрии (внут­риклеточное депо Са2+).

Протонный насос (Н + -АТФаза) имеется в мембране обкладочных клеток в желудке, где играет важную роль в выработке соляной кислоты; в почке он участвует в регуля­ции рН внутренней среды организма; этот насос постоянно работает во всех митохонд­риях.

Постоянная работа насосов необходима для поддержания концентрационных гради­ентов ионов, связанного с ними электричес­кого заряда клетки и движения воды и неза­ряженных частиц в клетку и из клетки вто­рично активно, в частности согласно законам диффузии и осмоса. Совокупность этих про­цессов обеспечивает жизнедеятельность клетки. В результате разной проницаемости. клеточной мембраны для разных ионов и по­стоянной работы ионных помп концентра­ция различных ионов внутри и снаружи клет­ки неодинакова. Поскольку ионы являются заряженными частицами, то существует электрический заряд клетки. Почти во всех изученных клетках внутреннее содержимое их заряжено отрицательно по отношению к внешней среде, т.е. внутри клетки преоблада­ют отрицательные ионы, а снаружи - поло­жительные.

Преобладающими ионами в организме человека являются Na + , К + , Сl - , причем К + находится преимущественно в клетке, а Na + и Сl - - во внеклеточной жидкости. Внутри клетки находятся также крупномолекуляр­ные (в основном белкового происхождения) анионы. Роль первичного транспорта в поддержании различной концентрации разных ионов легко доказать, например, в опыте с эритроцитами. Если с помощью цианида подавить дыхание эритроцитов, то их ион­ный состав начинает постепенно меняться: Nа + и Сl - диффундируют через клеточную мембрану в эритроцит, К + - из эритроцита. Но в норме за счет энергии, поставляемой процессом дыхания, идет их первичный транспорт в обратном направлении, благо­даря чему и поддерживаются концентраци­онные градиенты.

Более трети энергии АТФ, потребляемой клеткой в состоянии покоя, расходуется на перенос только Na + и К + , т.е. на работу Na + /К. + -насоса. Это обеспечивает сохранение клеточного объема (осморегуляция), поддер­жание электрической активности в нервных и мышечных клетках, транспорт других ве­ществ в различных клетках организма.

Механизм работы ионных насосов.Nа + /К + -насос - молекула интегрального белка, пронизывающая всю толщу клеточной мембраны. Молекула имеет участок, который связывает либо Na + , либо К + , - это активный участок. При конформации Е 1 белковая молекула активной своей частью обращена внутрь клетки и об­ладает сродством к Nа + , который присоеди­няется к белку, в результате чего активирует­ся АТФаза, обеспечивающая гидролиз АТФ и освобождение энергии. Последняя обеспечи­вает конформацию молекулы белка: она пре­вращается в форму Е 2 , в результате чего ак­тивный ее участок уже обращен наружу кле­точной мембраны. Теперь белок теряет сродство к Na + , последний отщепляется от него, а белок-помпа приобретает сродство к иону К + и соединяется с ним. Это ведет снова к изме­нению конформации переносчика: форма Е 2 переходит в форму Е 1 , когда активный учас­ток белка снова обращен внутрь клетки. При этом он теряет сродство к иону К + , и тот от­щепляется, а белок приобретает снова срод­ство к иону Na + - это один цикл работы помпы. Затем цикл повторяется. Насос явля­ется электрогенным, поскольку за один цикл выводится из клетки 3 иона Nа + , а возвраща­ется в клетку 2 иона К + . На один цикл рабо­ты Na/К-насоса расходуется одна молекула АТФ, причем энергия расходуется только на перенос Na + .

Подобным образом работают и Са-АТФазы сарко- и эндоплазматической сетей, а также клеточной мембраны, с тем лишь раз­личием, что переносятся только ионы Ca 2+ и в одном направлении - из гиалоплазмы в сарко- или эндоплазматический ретикулум, а также - наружу клетки. Кальциевый насос (Са-АТФаза) - молекула интегрального белка, также имеет активный участок, связы­вающий два иона Са 2+ , и может быть в двух конформациях - Е 1 и Е 2 . В конформации Е 1 активный участок молекулы белка обращен в гиалоплазму, обладает сродством к Са 2+ и со­единяется с ним. В результате насос перехо­дит в конформацию Е 1 , когда активный учас­ток молекулы белка обращен внутрь саркоплазматического ретикулума или наружу клетки. При этом уменьшается сродство белка к Са 2+ , последний отщепляется от него. В присутствии иона магния освобождается энергия АТФ, за счет которой молекула белка Са-АТФазы вновь переходит в конфор­мацию Е 1 ; цикл повторяется. Одна молекула АТФ переносит два иона Са 2+ .

Эндоцитоз, экзоцитоз и трансцитоз (микровезикулярный транспорт) - это еще три вида первично-активного транспорта, близких по механизму друг к другу, посредст­вом которых различные материалы перено­сятся через мембрану либо в клетку (эндоцитоз), либо из клетки (экзоцитоз), либо через клетку (трансцитоз). С помощью этих меха­низмов транспортируются крупномолекуляр­ные вещества (белки, полисахариды, нуклеи­новые кислоты), которые не могут транспор­тироваться по каналам или с помощью насо­сов.

При эндоцитозе клеточная мембрана об­разует впячивания или выросты внутрь клет­ки, которые, отшнуровываясь, превращаются в пузырьки. Последние затем обычно слива­ются с первичными лизосомами, образуя вторичные лизосомы, в которых содержимое подвергается гидролизу - внутриклеточному перевариванию. Продукты гидролиза исполь­зуются клеткой. Различают два типа эндоцитоза - фагоцитоз (поглощение твердых час­тиц) и пиноцитоз - поглощение жидкого ма­териала (раствор, коллоидный раствор, в том числе и белков, суспензия). Пиноцитоз ха­рактерен для амебоидных простейших и для многих других клеток, таких как лейкоциты, клетки зародыша, клетки печени и некото­рые клетки почек, участвующие в водно-со­левом обмене, в обмене белков: они обеспе­чивают пиноцитоз белков из первичной мочи в клетки проксимальных канальцев и их лизис. С помощью пиноцитоза новорожден­ные получают с молоком матери иммуногло­булины, которые через энтероциты попадают в кровь ребенка и выполняют свои защитные функции. Процесс эндоцитоза имеет место при всасывании веществ в желудочно-ки­шечном тракте.

Экзоцитоз - процесс, обратный эндоцитозу; это наиболее распространенный ме­ханизм секреции. Таким способом различные материалы выводятся из клеток: из пресинаптических окончаний - медиатор, из пи­щеварительных вакуолей удаляются остав­шиеся непереваренными частицы, а из сек­реторных клеток путем экзоцитоза выводится их жидкий секрет (слизь, гормоны, фермен­ты), из гепатоцитов - альбумины.

Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются белки, обра­зовавшиеся в рибосомах эндоплазматического ре­тикулума. Низкомолекулярные вещества (медиа­торы, некоторые гормоны) попадают в везикулы преимущественно с помощью вторичного транс­порта. Пузырьки транспортируются сократитель­ным аппаратом клетки, состоящим из нитей акти­на, миозина и микротрубочек, к клеточной мем­бране, сливаются с ней, и содержимое клеток вы­деляется во внеклеточную среду. Энергия АТФ расходуется на деятельность сократительного ап­парата клетки. Процесс слияния везикул с клеточ­ной мембраной активируется фосфолипидом лизолецитином и внутриклеточным Са 2+ . Например, поступление Са 2+ в нервное окончание обеспечи­вает выделение медиатора через пресинаптическую мембрану в синаптическую щель. В процессе взаимодействия эндо- и экзоцитоза происходит самообновление клеточной мембраны (кругообо­рот, рециркуляция): в течение каждого часа в про­цессе эндоцитоза в разных клетках используется от 3 до 100 % клеточной оболочки, но с такой же скоростью происходит ее восстановление в ре­зультате экзоцитоза.

Трансцитоз сочетает в себе элементы эндо- и экзоцитоза: это перенос частиц через клетку, например, молекул белка в виде вези­кул - через эндотелиальную клетку капилля­ров на другую ее сторону. В этом случае эндоцитозные пузырьки не взаимодействуют с лизосомами. При этом пузырьки могут сли­ваться друг с другом, образуя каналы, пересе­кающие всю клетку.

Вторично активный транспорт

Вторичный транспорт - переход различных частиц и молекул воды за счет ранее запасен­ной (потенциальной) энергии. Потенциаль­ная энергия создается в виде электрического, концентрационного и гидростатического гра­диентов (это обеспечивает диффузию, осмос, следование за растворителем) и градиента гидростатического давления жидкости, обес­печивающего фильтрацию, что создается дея­тельностью сердца, скелетных и гладких мышц. К вторичному транспорту относятся следующие виды транспорта.

Диффузия . Согласно законам диффу­зии, частицы перемещаются из области с вы­сокой концентрацией в область с низкой концентрацией. Частицы с одноименными электрическими зарядами отталкиваются, с разноименными зарядами - притягиваются друг к другу. Направление диффузии опреде­ляется взаимодействием электрического и концентрационного (химического) градиен­тов. Если частицы не заряжены, то направле­ние их диффузии определяется только гради­ентом концентрации. Скорость диффузии определяется проницаемостью мембраны, а также градиентом концентрации для незаря­женных частиц; электрическим и концентра­ционным градиентами - для заряженных частиц. Направления действия электрическо­го и концентрационного градиентов могут не совпадать. Например, Na+ в процессе воз­никновения возбуждения продолжает посту­пать в клетку, когда она внутри уже заряжена положительно. Этот переход ионов обеспечи­вается концентрационным градиентом во­преки электрическому градиенту. Совокуп­ность химического (концентрационного) и электрического градиентов называют элект­рохимическим градиентом. Различают прос­тую и облегченную диффузию и осмос как частный случай диффузии.

Простая диффузия осуществляется либо непосредственно через липидный бислой, либо через каналы. При этом заряженные частицы движутся согласно электрохимичес­кому градиенту, а незаряженные - согласно только химическому градиенту. Через липид­ный бислой проходят жирорастворимые час­тицы. Если они находятся в воде по одну сто­рону мембраны, то могут внедряться в липидную оболочку благодаря тепловому дви­жению (при этом необходимо освободиться от гидратной оболочки). Частицы-неэлектро­литы обычно легко освобождаются от гидрат­ной оболочки (разрыв водородных связей). Естественно, с уменьшением молекулярной массы способность перехода частиц через мембрану возрастает. Примером простой диффузии через липидный слой может слу­жить диффузия малых незаряженных поляр­ных молекул этанола, кислорода, углекисло­го газа, стероидных гормонов и других липидов, тироксина, мочевины, а также чуждых клетке веществ, в частности ядов и лекарств. Этот процесс происходит слишком медленно и плохо контролируется. В ходе эволюции сформировались специальные каналы, по ко­торым могут проходить различные частицы, причем ионы - очень быстро - за 0,5-1 мс. Каналы заполнены водой и, кроме ионов, через них могут проходить малые молекулы неэлектролитов (этанол, мочевина), заряжен­ные молекулы. Диаметр этих каналов 0,3- 0,8 нм. Скорость диффузии определяется электрохимическим градиентом и проницае­мостью клеточной мембраны для данного ве­щества. С течением времени скорость про­стой диффузии изменяется мало, пока суще­ствует движущая сила (электрический или концентрационный градиенты), так как по одному и тому же каналу или через липид­ный бислой после прохождения одной части­цы сразу же может следовать другая.

Облегченная диффузия осуществляется также согласно концентрационному градиен­ту и обеспечивает перенос веществ, способ­ных образовывать комплексы с другими мо­лекулами-переносчиками. Переносчик - специфический мембранный белок должен свободно переходить с одной стороны мем­браны на другую. Этот транспорт осущест­вляется очень быстро. С помощью простой диффузии не могут проходить через мембра­ну даже небольшие полярные молекулы - моносахариды, аминокислоты. Облегченная диффузия имеет ряд особенностей по сравне­нию с простой диффузией. 1. Имеются спе­цифические переносчики для отдельных или нескольких веществ, близких по строению. Вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем же переносчиком и конкурировать за пере­носчик. 2. У молекулы-переносчика может быть особый канал, пропускающий вещество только одного определенного типа. 3. С уве­личением концентрации вещества с одной стороны мембраны скорость облегченной диффузии возрастает только до определенно­го предела в отличие от простой диффузии. Прекращение нарастания облегченной диф­фузии при увеличении концентрации веще­ства свидетельствует о том, что все перенос­чики уже заняты - явление насыщения. Пере­носчиками являются белковые молекулы мембран, которые совершают челночные движения с одной стороны мембраны на дру­гую и обратно либо встраиваются в мембра­ну. В последнем случае образуется канал, по которому проходят транспортируемые веще­ства, в основном сахара, аминокислоты. Од­нако неясно, каким образом транспортиру­ются сами переносчики.

В случае предполагаемых челночных движений белковых молекул-переносчиков возникает во­прос: какая сила обеспечивает транспорт самих переносчиков? Если это одностороннее движе­ние, то оно быстро прекратится после уравнива­ния концентрации самих переносчиков по обе стороны клеточной мембраны. На этот вопрос от­вета пока нет. Возможны два механизма. Во-пер­вых, за счет создания градиента концентрации самого переносчика, с помощью концентрацион­ного градиента транспортируемого вещества. Если, например, концентрация глюкозы больше вне клетки, нежели в клетке, то она может пере­ходить в клетку согласно своему градиенту кон­центрации. Образование комплекса молекул глю­коза - переносчик лишь улучшает прохождение глюкозы через мембрану согласно концентраци­онному градиенту глюкозы. Движущей силой яв­ляется концентрационный градиент глюкозы. На внутренней стороне мембраны клетки комплекс распадается, поэтому концентрация молекул-переносчиков возрастает и они, согласно своему концентрационному градиенту, переходят на внешнюю сторону клеточной мембраны, снова соединяются с глюкозой и ускоряют ее переход в клетку. Такой транспорт возможен только при на­личии концентрационного градиента транспорти­руемого вещества, например при более высокой концентрации глюкозы и аминокислот в кишеч­нике вследствие приема пищи и гидролиза пище­вых веществ. Далее глюкоза и аминокислоты могут переходить из клетки в кровь согласно их концентрационным градиентам - если в энтероцитах их концентрация больше, чем в плазме крови. Из плазмы крови аминокислоты и глюкоза поступают в клетки различных органов и тканей организма согласно концентрационным их гради­ентам, так как клетка расходует эти вещества. По всей этой цепочке: полость кишки - энтероциты - кровь - интерстиций - клетки организма транспорт глюкозы и аминокислот осуществляет­ся без затрат энергии - это исключение из обще­го правила. В кишечнике же глюкоза и аминокис­лоты накапливаются вследствие пищеварения, на что также затрачивается энергия - механическая обработка пищи, продвижение ее химуса по желу­дочно-кишечному тракту, выработка пищевари­тельных соков. Во-вторых, челночные движения переносчика могут осуществляться или допол­няться с помощью ионов К + Известно, что К + постоянно диффундирует из клетки согласно кон­центрационному градиенту. При этом на внутрен­ней стороне мембраны клетки может образоваться комплекс ион К + - молекула переносчика, кото­рый и перейдет на внешнюю сторону клеточной мембраны. В этом случае движущей силой являет­ся концентрационный градиент К + , который затем переносится в клетку Na/К-помпой с непо­средственной затратой энергии, т.е. первично ак­тивно. Напомним, что энергия здесь затрачивает­ся только на транспорт Nа + - транспорт веществ экономичен. Переносчик же транспортируется вторично активно: если не будет работать Na/K-помпа, челночные движения переносчика, соглас­но такому представлению, прекратятся, при этом сохраняется простая диффузия в случае наличия градиента концентрации вещества.

Осмос - это частный случай диффузии: движение воды (растворителя) через полу­проницаемую мембрану в область с большей концентрацией частиц, т.е. с большим ос­мотическим давлением. Осмотическое давле­ние - это диффузионное давление, обеспе­чивающее движение растворителя через полупроницаемую мембрану. Измеряется оно минимальным механическим давлением на раствор (например, с помощью поршня), препятствующим движению растворителя через полупроницаемую мембрану. Осмоти­ческое давление одномолярного раствора чрезвычайно велико: 22,4 атм, в плазме крови оно существенно ниже - 7,6 атм, не­сколько больше оно внутри клетки, что обес­печивает ее упругость вследствие поступле­ния воды в клетку и растяжения ее мембра­ны. Вода поступает в клетку через водные ка­налы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через водные каналы (аквапорионы) могут проходить также малые незаряженные молекулы: кислород, углекислый газ, этанол, мочевина.

Фильтрация - переход раствора через полупроницаемую мембрану (стенку сосуда) под действием градиента гидростатического давления между жидкостями по обе стороны этой мембраны. Градиент гидростатического давления создается либо деятельностью серд­ца (фильтрация в артериальном конце капил­ляра всех органов и тканей организма, а также образование первичной мочи в почке), либо гладкой мускулатурой желудочно-ки­шечного тракта и мышечного пресса, обеспе­чивающих повышение гидростатического давления в полости желудка и кишечника, что способствует всасыванию веществ в кровь.

В процессе фильтрации поток воды через мембрану увлекает за собой растворен­ные вещества, свободно проходящие через полупроницаемую мембрану, при этом час­тицы переходят через мембрану в неизменен­ной концентрации. Это наблюдается, напри­мер, в артериальном конце капилляров всех органов и тканей организма, в собиратель­ных трубках почки при переходе воды в моз­говой слой почки. Растворенные частицы, например мочевина, переходят с жидкостью в интерстиций почки, аминокислоты и глю­коза - в интерстиций всех органов и тканей организма.

Натрийзависимый транспорт. В этом случае энергия затрачивается на создание градиента натрия. Имеется два варианта дан­ного механизма транспорта.

Первый вариант, когда направление дви­жения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт), например перенос глюкозы в прокси­мальных канальцах нефрона в клетку каналь­ца из первичной мочи. Глюкоза соединяется с белком-переносчиком, последний соединя­ется с Nа + , а Nа + , согласно концентрацион­ному и электрическому градиентам, диффун­дирует в клетку канальца и несет с собой глюкозу. На внутренней стороне клеточной мембраны комплекс распадается, Na + выво­дится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту - первично активно. Глюкоза обратно пройти не может и по механизму простой или облегченной диф­фузии (с переносчиком) выходит из клетки уже с другой стороны - в интерстиций, а затем в кровь согласно концентрационному градиенту. С помощью натрийзависимого транспорта всасываются аминокислоты и моносахара в кишечнике, если всасывание идет вопреки концентрационному градиенту; про­исходит обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС. Транспорт веществ с помощью Nа + осуществляется согласно зако­нам диффузии для Na + . Транспортируемое вещество при этом может поступать в клетку вопреки собственному концентрационному градиенту. Движущей силой является электрохимический градиент Nа + . Глюкоза вместе с Nа + идет в клетку даже в том случае, если ее концентрация в клетке больше, неже­ли в среде, если, конечно, электрохимичес­кий градиент Nа + превосходит концентраци­онный градиент глюкозы.

Второй вариант натрийзависимого транс­порта, когда перемещение транспортируемых частиц направлено в противоположную по от­ношению к движению Nа + сторону, - это антипорт (противотранспорт). Этим обмен­ным механизмом регулируется, например, со­держание Са 2+ в клетке, рН внутри клетки за счет выведения Н + -иона в обмен на внекле­точный Nа + . В большинстве клеток (а воз­можно, и во всех) внутриклеточная концент­рация Са 2+ на несколько порядков ниже вне­клеточной. Концентрационный градиент Nа + участвует в выведении Са 2+ из клетки (в соот­ношении ЗNа + : 1Са 2+). В некоторых клетках (кардиомиоциты, гладкомышечные клетки) он играет главную роль. Об этом свидетельст­вует, в частности, следующий факт. Выведе­ние Са 2+ из клеток снижается, если удалить из внеклеточной среды Nа + . Это позволяет пред­положить, что Са 2+ выводится из клетки в обмен на поступающий в нее Nа + и противоположно направленные потоки этих ионов сопряжены друг с другом; обеспечивается он переносчиком-обменником. Исходным ис­точником энергии этого процесса опять явля­ется градиент Nа + , который в конечном счете формируется за счет АТФ-зависимого актив­ного транспорта Nа + . Поэтому при ингибировании Nа/К-АТФазы сердечными гликозидами, при уменьшении внеклеточной концент­рации Nа + и в бескалиевой среде.(когда Nа + выводится из клетки недостаточно) Nа/Са-обменник блокируется, в результате чего уве­личивается внутриклеточная концентрация Са 2+ , что ведет к увеличению силы сокраще­ния сердца. Это свойство сердечных гликозидов используется в клинической практике.

Вторичный транспорт веществ играет важ­ную роль в деятельности почки, например работа Nа/Н-обменника в канальцах почек. В этом случае выведение Н + из клеток, вы­стилающих почечный каналец, в просвет ка­нальца сопряжено с поглощением клетками Nа + в отношении 1:1, что весьма важно: не приходится затрачивать энергию на выполне­ние электрической работы в процессе регуля­ции рН среды, поскольку происходит обмен двух одинаковых положительных зарядов.

Конкретный механизм работы переносчика-обменника неясен. Переносчик может транспортировать Са 2+ и Н + вопреки их электрическим и концентраци­онным градиентам только в том случае, если сам пере­носчик имеет собственный градиент, - его концентра­ция в клетке больше, чем вне клетки, причем этот гра­диент должен постоянно поддерживаться, иначе перенос Са 2+ и Н + прекратится. Полагаем, что выведение Са 2+ и Н + из клетки в результате диффузии Nа + в клетку (противотранспорт) осуществляется следую­щим образом. На постоянно поступает в клетку, со­гласно своему электрохимическому градиенту, и транспортирует с собой (в комплексе) молекулы-пере­носчики с внешней стороны клеточной мембраны на внутреннюю, что и ведет к созданию их концентраци­онных градиентов, направленных из клетки. Са 2+ и Н + соединяются со своими переносчиками на внутренней стороне клеточной мембраны и транспортируются из клетки в виде комплексов согласно градиентам своих переносчиков. Именно поэтому, например, блокада Nа/К насоса ведет к накоплению Са 2+ в кардиомиоцитах (транспорт Са 2+ из клетки уменьшается). Это примеры вторичного транспорта вещества за счет пер­вичного транспорта Nа + , который с помощью помпы выводится из клетки. Переносчики совершают челноч­ные движения за счет работы Nа/К-насоса - вторич­но активно и транспортируют с собой Са 2+ и Н + .

Таким образом, механизмы вторичного транспорта веществ весьма разнообразны. Что касается вторичного транспорта ионов, то он осуществляется, как правило, с помо­щью простой диффузии через специальные ионные каналы.

Ионные каналы

Ионные каналы образованы белками, они весьма разнообразны по устройству и меха­низму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние активации управ­ляемого ионного канала обычно длится око­ло 1 мс, иногда до 3 мс и значительно боль­ше, при этом через один канал может пройти 12-20 млн ионов.

Классификация ионных каналов прово­дится по нескольким признакам.

По возможности управления их функцией различают управляемые и неуправляе­мые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах.

По скорости движения ионов каналы могут быть быстрыми и медленными. Напри­мер, потенциал действия в скелетной мышце возникает в следствие активации быстрых Nа- и К-каналов. В развитии потенциала действия сердечной мышцы наряду с бы­стрыми каналами для Nа + и К + важную роль играют медленные каналы - кальциевые, ка­лиевые и натриевые.

В зависимости от стимула, активирую­щего или инактивирующего, управляемые ионные каналы различают несколько их видов:

а)потенциалчувствительные,

б)хемочувствительные,

в)механочувствительные,

г)кальцийчувствительные,

д) каналы, чувст­вительные ко вторым посредникам.

Послед­ние расположены во внутриклеточных мем­бранах, они изучены недостаточно, так же как и кальцийчувствительные каналы. При взаимодействии медиатора (лиганда) с рецепторами, расположенными на поверхности клеточной мембраны, может происходить от­крытие ворот хемочувствительных каналов, поэтому их называют также рецепторуправляемыми каналами. Л и г а н д - это биологи­чески активное вещество или фармакологи­ческий препарат, активирующий или блокирующий рецептор. Открытие хемочувстви­тельных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых ка­налов открываются и закрываются при изме­нении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие элект­рический заряд. Механочувствительные ка­налы активируются и инактивируются сдав­ливанием и растяжением. Кальцийчувстви­тельные каналы активируются, как видно из названия, кальцием, причем Са 2+ может ак­тивировать как собственные каналы, напри­мер Са-каналы саркоплазматического ретикулума, так и каналы других ионов, напри­мер каналы ионов К + . Мембраны возбудимых клеток (гладких и поперечнополосатых мышц, в том числе и сердечной мышцы, нервной системы) содержат потенциале-, хемо-, механо- и кальцийчувствительные ка­налы. Следует заметить, что кальций-чувствительные каналы - это один из примеров хемо­чувствительных каналов.

В зависимости от селективности разли­чают ионоселективные каналы, пропускаю­щие только один ион, и каналы, не обладаю­щие селективностью. Имеются Nа-, К-, Са-, С1- и Nа/Са-селективные каналы. Есть кана­лы, пропускающие несколько ионов, напри­мер Nа + , К + и Са 2+ в клетках миокарда, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциал чувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов. Например, при действии ацетилхолина на Н-холинорецептор постсинаптической мембраны в нерв­но-мышечном синапсе активируются ионные каналы, через которые проходят одновремен­но ионы Nа + , К + и Са 2+ . Механочувствитель­ные каналы являются вообще неселективны­ми для одновалентных ионов и Са 2+ .

Один и тот же ион может иметь не­сколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие.

Каналы для К + :

а) неуправляемые каналы покоя (каналы утечки) через которые К + постоянно выходит из клетки, что является глав­ным фактором в формировании мем­бранного потенциала(потенциала покоя);

б) потенциалчувствительные управляемые К-каналы;

в) К-каналы, активируемые Са 2+ ;

г) каналы, активируемые и другими иона­ми и веществами, например ацетилхолином, что обеспечивает гиперполяризацию миоцитов сердца.

Каналы для Nа + - управляемые быстрые и медленные и неуправляемые (каналы утечки ионов):

а) потенциалчувствительные быстрые Na-каналы - быстро активирующиеся при уменьшении мембранного потенциала, обеспечивают вход Nа + в клетку во вре­мя ее возбуждения;

б) рецепторуправляемые Nа-каналы, активируемые ацетилхолином в нервно-мы­шечном синапсе, глутаматом - в си­напсах нейронов ЦНС;

в) медленные неуправляемые Nа-каналы-каналы утечки, через которые Nа + постоянно диффундирует в клетку и пере носит с собой другие молекулы, напри­мер глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Nа-каналы утечки обеспечивают вторичный транспорт веществ и участие Nа + в фор­мировании мембранного потенциала.

Каналы для Са 2+ весьма разнообразны и наиболее сложны: рецепторуправляемые и потенциалуправляемые, медленные и бы­стрые:

а) медленные кальциевые потенциалчувствительные каналы (новое название: L-типа), медленно активирующиеся при деполяризации клеточной мембра­ны, обусловливают медленный вход Са 2+ в клетку и медленный кальциевый потенциал, например, у кардиомиоцитов. Имеются в исчерченных и гладких мышцах, в нейронах ЦНС;

б) быстрые кальциевые потенциалчувствительные каналы саркоплазматического ретикулума обеспечивают выход Са 2+ в гиалоплазму и электромеханическое со­пряжение.

Каналы для хлора имеются в скелетных и сердечных миоцитах, эритроцитах, в неболь­шом количестве в нейронах и сконцентри­рованы в синапсах. Потенциалуправляемые С1-каналы имеются в кардиомиоцитах, ре­цепторуправляемые в синапсах ЦНС и ак­тивируются тормозными медиаторами ГАМК и глицином.

Структура ионных каналов и их функци­онирование. Каналы имеют устье и селектив­ный фильтр, а управляемые каналы - и во­ротный механизм; каналы заполнены жид­костью, их размеры 0,3-0,8 нм. Селектив­ность ионных каналов определяется их раз­мером и наличием в канале заряженных час­тиц. Эти частицы имеют заряд, противопо­ложный заряду иона, который они притяги­вают, что обеспечивает проход иона через данный канал (одноименные заряды, как из­вестно, отталкиваются). Через ионные кана­лы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны из­бавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диа­метр иона Nа + , например, с гидратной обо­лочкой равен 0,3 нм, а без гидратной оболоч­ки - 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеива­ния» не в состоянии объяснить, например, почему К + не проходит через открытые Nа-каналы в начале цикла возбуждения клет­ки, но тем не менее она дает удовлетвори­тельное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (се­лективной) проницаемости клеточных мем­бран для разных частиц и ионов.

У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых ка­налов способствует активации рядом распо­ложенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Час­тичная деполяризация клеточной мембраны за счет активации механочувствительных ка­налов может привести к активации потенциалчувствительных каналов Nа + , К + (или Cl -) и Са 2+ .

Ионные каналы блокируются специфи­ческими веществами и фармакологическими препаратами, что широко используется с ле­чебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd 3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхо­лином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые - двухвалентными ионами, на­пример ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм 2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успеш­ное изучение ионных каналов дает возмож­ность глубже понять механизм действия фар­макологических препаратов, а значит, более успешно применять их в клинической прак­тике. Новокаин, например, как местный анестетик снимает болевые ощущения пото­му, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волок­нам.

Транспорт веществ:

Перенос веществ через биол. мембраны сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии.

Различают несколько видов транспорта:

1 . Юнипорт – этотранспорт вещества через мембрану независимо от наличия и переноса других соединений.

2. Контранспорт – это перенос одного вещества сопряженного с транспортом другого: симпорт и антипорт

а) причем однонаправленный перенос называется симпортом – всасывание аминокислот через мембрану тонкого кишечника,

б) противоположно направленный - антипортом (натрий – калиевый насос).

Транспорт веществ может быть - пассивный и активный транспорт (перенос)

Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии (направленного движения) по концентрационным (из maс в сторону min), электрическим или гидростатическим градиентам. Вода перемещается по градиенту водного потенциала. Осмос - это перемещение воды через полупроницаемую мембрану.

Активный транспорт осуществляется против градиентов (из min в сторону maс), связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных белков переносчиков (АТФ - синтетазы).

Пассивный перенос может осуществляться:

а. Путем простой диффузии через липидный бислои мембраны, а также через специализированные образования - каналы. Путем диффузии через мембрану проникают в клетку:

    незаряженные молекулы , хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства,

    газы - кислород и углекислый газ.

    ионы – они поступают через пронизывающие каналы мембраны, представляющие собой липопротеиновые структуры, Они служат для переноса определенных ионов (например, катионов – Na, K, Ca, анионов Cl, P,) и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.

б. Облегчённой диффузии . В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

в. Осмоса – перемещения растворителя через мембрану

Активный транспорт

Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин, например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума - 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма.

В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов например:

    натрия и калия - натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса - Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия .

    Существуют два типа Са 2 +-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая - аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция.

    К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ.

    В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

    Протонный насос в митохондриях и пластидах

    секреция HCI в желудке,

    поглощение ионов клетками корней растений

Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, - общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых транспортных болезней, среди которых:

    почечная гликозурия,

    цистинурия,

    нарушение всасывания глюкозы, галактозы и витамина В12,

    наследственный сфероцитоз (гемолитическая анемия, эритроциты имеют форму шара, при этом уменьшается поверхность мембраны, падает содержание липидов, увеличивается проницаемость мембраны для натрия. Сфероциты удаляются из кровяного русла быстрее, чем нормальные эритроциты).

В особую группу активного транспорта выделяют перенос веществ (крупных частиц) путем - и эндо- и экзоцитоза .

Эндоцитоз (от греч. эндо - внутри) поступление веществ в клетку, включает фагоцитоз и пиноцитоз.

Фагоцитоз (от греч. Phagos - пожирающий) – процесс захватывания твёрдых частиц, инородных живых объектов(бактерий, фрагменты клеток) одноклеточными организмами или клетками многоклеточных, последние называются фагоцитами , или клетками-пожирателями. Фагоцитоз открыт И. И. Мечниковым. Обычно при фагоцитозе клетка образует выпя­чивания, цитоплазмы - псевдоподии, которые обтекают захватываемые частицы.

Но о6разование псевдоподий не обязательно.

Фагоцитоз играет важную роль в питании одноклеточных и низших мно­гоклеточных животных, которым свойственно внутриклеточное пищева­рение, а также характерен для клеток, играющих важную роль в явлениях иммунитета и метаморфоза. Такая форма поглощения свойственна клеткам соединительной ткани – фагоцитам, выполняющим защитную функцию, активно фагоцитируют клетки плаценты, клетки выстилающие полость тела, пигментный эпителий глаз.

В процессе фагоцитоза можно выделить четыре последовательные фазы. В первой (факультативной) фазе фагоцит сближается с объектом погло­щения. Здесь существенное значение имеет положительная реакция фагоцита на химическое раздражение хемотаксис. Во второй фазе наблюдается адсорбция поглощаемой частицы на поверхности фаго­цита. В третьей фазе плазматическая мембрана в виде мешочка обвола­кивает частицу, края мешочка смыкаются и отрываются от остальной мембраны, а образовавшаяся вакуоль оказывается внутри клетки. В чет­вертой фазе заглоченные объекты разрушаются и перевариваются внутри фагоцита. Разумеется, эти стадии не отграничены, а незаметно переходят одна в другую.

Клетки могут аналогичным способом поглощать также жидкости и крупномолекулярные соединения. Это явление получило название п и н о ц и т о з а (греч. рупо - пить и суtоз - клетка). Пиноцитоз сопровожда­ется энергичным движением цитоплазмы в поверхностном слое, приводящим к образованию впячивания клеточной мембраны, идущей от поверхности в виде канальца внутрь клетки. На конце канальца образуются вакуоли, которые отрываются и переходят в цитоплазму. Пиноцитоз наиболее акти­вен в клетках с интенсивным обменом веществ, в частности в клетках лимфа­тической системы, злокачественных опухолей.

Путем пиноцитоза в клетки проникают высокомолекулярные соедине­ния: питательные вещества из кровяного русла, гормоны, ферменты и дру­гие вещества, в том числе лекарственные. Электронно-микроскопические исследования показали, что путем пиноцитоза происходит всасывание жира эпителиальными клетками кишечника, фагоцитируют клетки почечных канальцев и растущие ооциты.

Инородные тела, попавшие в клетку путем фагоцитоза или пиноцитоза, подвергаются воздействию лизирующих ферментов внутри пищеваритель­ных вакуолей либо непосредственно в цитоплазме. Внутриклеточными ре­зервуарами этих ферментов являются лизосомы.

Функции эндоцитоза

    Осуществляются, питание (яй­цеклетки поглощают таким способом желточные белки: фагосомами являются пищеварительные вакуоли простейших)

    Защитные и иммунные реакции (лейкоциты поглощают чужеродные частицы и иммуноглобули­ны)

    Транспорт (почечные канальцы всасывают бел­ки из первичной мочи).

    Избирательный эндоцитоз определен­ных веществ (желточных белков, иммуноглобулинов и т. п.) происходит при контакте этих веществ с субстрат-специфически­ми рецепторными участками на плазматической мембране.

Материалы, попадающие в клетку путем эндоцитоза, рас­щепляются («перевариваются»), накапливаются (напри­мер, желточные белки) или снова выводятся с противоположной стороны клетки путем экзоцитоза («цитопемпсис»).

Экзоцитоз (от греч. экзо – вне, снаружи)- процесс, противоположный эндоцитозу: например, из эндоплазматического ретикулума, аппарата Гольджи, различные эндоцитозные пузырьки, лизосомы сливаются с плазматической мембраной, освобождая своё содержимоё наружу.

И активный транспорт. Пассивный транспорт происходит без затрат энергии по электрохимическим градиентом. К пассивному относятся диффузия (простая и облегченная), осмос, фильтрация. Активный транспорт требует энергии и происходит вопреки концентрационном или электрическом градиента.
Активный транспорт
Это транспорт веществ вопреки концентрационном или электрическом градиента, что происходит с затратами энергии. Различают первичный активный транспорт, что требует энергии АТФ, и вторичный (создание за счет АТФ ионных концентрационных градиентов по обе стороны мембраны, а уже энергия этих градиентов используется для транспорта).
Первичный активный транспорт широко используется в организме. Он участвует в создании разности электрических потенциалов между внутренней и внешней сторонами мембраны клетки. С помощью активного транспорта создаются различные концентрации Na +, К +, Н +, СИ "" и других ионов в середине клетки и во внеклеточной жидкости.
Лучше исследованы транспорт Na+ и К+ - Na+,-K +-Hacoc. Этот транспорт происходит с участием глобулярного белка с молекулярной массой около 100 000. Белок имеет три участка для связывания Na + на внутренней поверхности и два участка для связывания К + на внешней поверхности. Наблюдается высокая активность АТФ-азы на внутренней поверхности белка. Энергия, образующаяся при гидролизе АТФ, приводит конформационные изменения белка и при этом выводится три ионы Na + из клетки и вводится в нее два иона К + С помощью такого насоса создаются высокая концентрация Na + во внеклеточной жидкости и высокая концентрация К + - в клеточной.
В последнее время интенсивно изучаются Са2 +-насосы, благодаря которым концентрация Са2 + в клетке в десятки тысяч раз ниже, чем вне ее. Различают Са2 +-насосы в клеточной мембране и в органеллах клетки (саркоплазматической сети, митохондрии). Са2 +-насосы тоже функционируют за счет белка-переносчика в мембранах. Этот белок имеет высокую АТФ-азную активность.
Вторичный активный транспорт. Благодаря первичном активном транспорта создается высокая концентрация Na + вне клетки, возникают условия для диффузии Na + в клетку, но вместе с Na + другие вещества могут войти в нее. Этот транспорт »направлен в одну сторону, называется симпорта. В противном случае вход Na + стимулирует выход другого вещества из клетки, это два потока, направленные в разные стороны, - антипорт.
Примером симпорта может быть транспорт глюкозы или аминокислот вместе с Na +. Белок-переносчик имеет два участка для связывания Na + и для связывания глюкозы или аминокислоты. Идентифицированы пять отдельных белков для связывания пяти типов аминокислот. Известны и другие виды симпорта - транспорт N + вместе с в клетку, К + и Сl-из клетки и др..
Почти во всех клетках существует механизм антипорта - Na + переходит в клетку, а Са2 + выходит из нее, или Na + - в клетку, а Н + - из нее.
Активно транспортируются через мембрану Mg2 +, Fe2 +, НСО3-и много других веществ.
Пиноцитоз - это один из видов активного транспорта. Он заключается в том, что некоторые макромолекулы (преимущественно белков, макромолекулы которых имеют диаметр 100-200 нм) присоединяются к рецепторам мембраны. Эти рецепторы специфичны для разных белков. Присоединение их сопровождается активизацией сократительных белков клетки - актина и миозина, которые образуют и закрывают полость с этим внеклеточным белком и небольшим количеством внеклеточной жидкости. При этом образуется пиноцитозных пузырек. У него выделяются ферменты гидролизуют этот белок. Продукты гидролиза усваиваются клетками. Пиноцитоз требует энергии АТФ и наличия Са2 + во внеклеточной среде.
Таким образом, есть много видов транспорта веществ через клеточные мембраны. На разных сторонах клетки (в апикальной, базальной, латеральной мембранах) могут происходить различные виды транспорта. Примером этого могут быть процессы, происходящие в

БИОФИЗИКА ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ.

Вопросы для самопроверки

1. Какие объекты включает в себя инфраструктура автотранспортного комплекса?

2. Назовите основные компоненты загрязнения окружающей среды автотранспортным комплексом.

3. Назовите основные причины формирования загрязнения окружающей среды автотранспортным комплексом.

4. Назовите источники, опишите механизмы образования и дайте характеристику составу загрязнений атмосферы производственными зонами и участками предприятий автомобильного транспорта.

5. Приведите классификацию сточных вод предприятий автомобильного транспорта.

6. Назовите и дайте характеристику основным загрязнениям сточных вод предприятий автомобильного транспорта.

7. Охарактеризуйте проблему отходов производственной деятельности предприятий автомобильного транспорта.

8. Дайте характеристику распределению массы вредных выбросов и отходов АТК по их видам.

9. Проанализируйте вклад объектов инфраструктуры АТК в загрязнение окружающей среды.

10. Какие виды нормативов составляют систему природоохранных нормативов. Дайте характеристику каждому из этих видов нормативов.

1. Бондаренко Е.В. Экологическая безопасность автомобильного транспорта: учебное пособие для вузов / Е.В. Бондаренко, А.Н. Новиков, А.А. Филиппов, О.В. Чекмарёва, В.В. Васильева, М.В. Коротков // Орёл: ОрёлГТУ, 2010. – 254 с. 2. Бондаренко Е.В. Дорожно-транспортная экология: [Текст]: учеб. пособие / Е.В. Бондаренко, Г.П. Дворников Оренбург: РИК ГОУ ОГУ, 2004. – 113 с. 3. Каганов И.Л. Справочник по санитарии и гигиене на автотранспортных предприятиях. [Текст] / И.Л. Каганов, В.Д.Морошек Мн.: Беларусь, 1991. – 287 с. 4. Картошкин А.П. Концепция сбора и переработки отработанных смазочных масел / А.П. Картошкин // Химия и технология топлив и масел, 2003. — №4. – С. 3 – 5. 5. Луканин В.Н. Промышленно-транспортная экология [Текст] / В.Н. Луканин, Ю.В. Трофименко М.: Высш. шк., 2001. — 273 с. 6. Российская автотранспортная энциклопедия. Техническая эксплуатация, обслуживание и ремонт автотранспортных средств. – Т.3. – М.: РБООИП «Просвещение», 2001. – 456 с.

Клетка — открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Транспорт веществ через биологические мембраны — необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны. Мембрана клетки является избирательным барьером для различных веществ, находящихся внутри и снаружи клетки. Существует два вида мембранного транспорта: пассивный и активный транспорт.

Все виды пассивного транспорта основаны на принципе диффузии. Диффузия является результатом хаотических независимых движений многих частиц. Диффузия постепенно уменьшает градиент концентрации до тех пор, пока не наступит состояние равновесия. При этом в каждой точке установится равная концентрация, и диффузия в обоих направлениях будет осуществляться в равной степени.Диффузия является пассивным транспортом, поскольку не требует затрат внешней энергии. Существует несколько видов диффузии в плазматической мембране:

1 ) Свободная диффузия.

123456Следующая ⇒

Читайте также:

Видео: Transport in Cells Diffusion and Osmosis, part — 1 Транспорт в клетках: Диффузия и Осмос, часть — 1

Диффузию через клеточную мембрану разделяют на два подтипа: простую диффузию и облегченную диффузию. Простая диффузия означает, что кинетическое движение молекул или ионов происходит через отверстие в мембране или межмолекулярные пространства без какого-либо взаимодействия с мембранными белками-переносчиками. Скорость диффузии определяется количеством вещества, скоростью кинетического движения, числом и размером отверстий в мембране, через которые могут перемещаться молекулы или ионы.

Видео: Транспорт веществ в организме

Облегченная диффузия требует взаимодействия с белком-переносчиком, который способствует транспорту молекул или ионов, связываясь с ними химически и в такой форме курсируя через мембрану.

Простая диффузия может происходить сквозь клеточную мембрану двумя способами: (1) через межмолекулярные промежутки липидного бислоя, если диффундирующее вещество растворимо в жирах- (2) через заполненные водой каналы, пронизывающие некоторые крупные транспортные белки, как показано на рис.

Транспорт веществ через мембрану. Активный и пассивный транспорт веществ через мембрану

Диффузия жирорастворимых веществ через липидный бислой. Одним из наиболее важных факторов, определяющих скорость диффузии вещества через липидный бислой, является его растворимость в липидах. Например, кислород, азот, углекислый газ и спирты имеют более высокую растворимость в липидах, поэтому могут непосредственно растворяться в липидном бислое и диффундировать через клеточную мембрану точно так же, как диффундируют водорастворимые вещества в водных растворах. Очевидно, что величина диффузии каждого из этих веществ прямо пропорциональна их растворимости в липидах. Этим путем может транспортироваться очень большое количество кислорода. Таким образом, кислород может доставляться внутрь клеток практически так же быстро, как если бы клеточной мембраны не существовало.

Диффузия воды и других нерастворимых в жирах молекул через белковые каналы. Несмотря на то, что вода совсем не растворяется в липидах мембраны, она легко проходит через каналы в белковых молекулах, пронизывающих мембрану насквозь. Поражает быстрота, с которой молекулы воды могут двигаться сквозь большинство клеточных мембран. Например, общее количество воды, которое диффундирует в любом направлении через мембрану эритроцита в секунду, примерно в 100 раз больше, чем объем самой клетки.

Сквозь каналы, представленные белковыми порами , могут проходить и другие нерастворимые в липидах молекулы, если они растворимы в воде и достаточно малы. Однако увеличение размеров таких молекул быстро снижает их проникающую способность. Например, возможность проникновения мочевины через мембрану примерно в 1000 раз меньше, чем воды, хотя диаметр молекулы мочевины всего на 20% больше диаметра молекулы воды. Тем не менее, учитывая поразительную скорость прохождения воды, проникающая способность мочевины обеспечивает ее быстрый транспорт через мембрану в течение нескольких минут.

Диффузия через белковые каналы

Компьютерные трехмерные реконструкции белковых каналов продемонстрировали наличие трубчатых структур, пронизывающих мембрану насквозь - от внеклеточной до внутриклеточной жидкости. Следовательно, вещества могут двигаться по этим каналам путем простой диффузии с одной стороны мембраны на другую. Белковые каналы отличаются двумя важными особенностями: (1) они часто избирательно проницаемы для определенных веществ- (2) многие каналы могут открываться или закрываться с помощью ворот.

Видео: Мембранные потенциалы — Часть 1

Избирательная проницаемость белковых каналов . Многие белковые каналы высокоизбирательны для транспорта одного или нескольких специфических ионов или молекул. Это связано с собственными характеристиками канала (диаметром и формой), а также с природой электрических зарядов и химических связей выстилающих его поверхностей. Например, один из важнейших белковых каналов - так называемый натриевый канал - имеет диаметр от 0,3 до 0,5 нм, но, что более важно, внутренние поверхности этого канала заряжены сильно отрицательно. Эти отрицательные заряды могут затягивать мелкие дегидратированные ионы натрия внутрь каналов, фактически вытягивая эти ионы из окружающих их молекул воды. Оказавшись в канале, ионы натрия диффундируют в любом направлении согласно обычным правилам диффузии. В связи с этим натриевый канал специфически избирателен для проведения ионов натрия.

Эти каналы несколько меньше, чем натриевые каналы , их диаметр составляет лишь около 0,3 нм, однако они не заряжены отрицательно и имеют иные химические связи. Следовательно, нет выраженной силы, тянущей ионы внутрь канала, и ионы калия не освобождаются от их водной оболочки. По размеру гидратированная форма иона калия значительно меньше гидратированной формы иона натрия, поскольку ион натрия притягивает гораздо больше молекул воды, чем ион калия. Следовательно, более мелкие гидратированные ионы калия легко могут проходить через этот узкий канал, в то время как более крупный гидратированный ион натрия «выбраковывается», что и обеспечивает избирательную проницаемость для специфического иона.

Источник: http://meduniver.com
Внимание, только СЕГОДНЯ!

Транспорт веществ: механизмы проникновения веществ в клетку

Пассивный транспорт

Перемещение вещества (ионов или небольших молекул) по градиенту концентрации. Осуществляется без затрат энергии путем простой диффузии, осмоса или облегченной диффузии с помощью белков-переносчиков.

Активный транспорт

Перенос веществ (ионов или небольших молекул) с помощью белков-переносчиков против градиента концентрации. Осуществляется с затратами АТФ.

Эндоцитоз

Поглощение веществ (крупных частиц или макромолекул) путем окружения их выростами цитоплазматической мембраны с образованием окруженных мембраной пузырьков.

Экзоцитоз

Выделение веществ (крупных частиц или макромолекул) из клетки путем окружения их выростами цитоплазматической мембраны с образованием окруженных мембраной пузырьков.

Фагоцитоз и обратный фагоцитоз

Поглощение и выделение твердых и крупных частиц. Характерны для клеток животных и человека.

Пиноцитоз и обратный пиноцитоз

Поглощение и выделение жидких и растворенных частичек. Характерны для клеток растений и животных.

Кириленко А. А. Биология.

ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ

ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

химиче­ской природы переносимого вещества и его концентрации от разме­ров

Пассивным транспортом

Путем простой диффузии осмоса.

облегченной диффузии.

белки-переносчики и белки-каналы. белком-переносчиком,

Белки-каналы

«ворота», которые открываются на короткое время, а затем закрываются.

В зависимости от природы канала «во­рота» могут открываться в ответ на свя­зывание сигнальных молекул (лиганд-зависимые воротные каналы), измене­ние мембранного потенциала (потенциал-зависимые воротные каналы) или механическую стимуляцию.

Активным транспортом

натриево-калиевого насоса

Насос образован встроенными в биологические мембраны специфи­ческими белками-ферментами аденозинтрифосфатазами, катализирующи­ми отщепление остатков фосфорной кислоты от молекулы АТФ.

В состав АТФаз входят: ферментный центр, ионный канал и структурные элемен­ты, препятствующие обратной утечке ионов в процессе работы насоса. На работу натриево-калиевого насоса рас­ходуется более 1/3 АТФ, потребляемой клеткой.

Унипорт - копортеров , или сопряженных переносчиков. симпорта антипорте - в противопо­ложных направлениях. По принципу ан­типорта работает, например, натриево­калиевый насос, активно перекачивая ионы Na + из клеток, а ионы К + внутрь клеток против их электрохимических градиентов. Примером симпорта слу­жит реабсорбция клетками почечных канальцев глюкозы и аминокислот из первичной мочи. В первичной моче концентрация Na + всегда значитель­но выше, чем в цитоплазме клеток по­чечных канальцев, что обеспечивается работой натриево-калиевого насоса. Связывание глюкозы первичной мочи с сопряженным белком-переносчиком открывает Nа + -канал, что сопровожда­ется переносом ионов Na + из первичной мочи внутрь клетки по градиенту их концентрации, то есть путем пассивного транспорта. Поток ионов Na + , в свою очередь, вызывает изменения конфор­мации белка-переносчика, результатом чего служит транспорт глюкозы в том же направлении, что и ионов Na + : из первичной мочи внутрь клетки.

В данном случае для транспорта глюкозы, как можно убедиться, сопряженный переносчик использует энергию гра­диента ионов Na + , создаваемую рабо­той натриево-калиевого насоса. Таким образом, работа натриево-калиевого насоса и сопряженного переносчика, использующего для транспорта глюкозы градиент ионов Na + , позволяет реабсорбировать практически всю глюкозу из первичной мочи и включить ее в об­щий метаболизм организма.

Как отмечалось выше, в процес­се работы натриево-калиевого насо­са на каждые два поглощенных клет­кой иона калия из нее выводится три иона натрия. В результате снаружи клеток создается избыток ионов Na + , а внутри - избыток ионов К + . Однако еще более значимый вклад в создание трансмембранного потенциала вносят калиевые каналы, которые в клетках, находящихся в состоянии покоя, всег­да открыты. Благодаря этому ионы К + выходят по градиенту концентрации из клетки во внеклеточную среду. В ре­зультате этого между двумя сторонами мембраны возникает разность потен­циалов от 20 до 100 мВ. Плазмалемма возбудимых клеток (нервных, мы­шечных, секреторных) наряду с К + — каналами содержит многочисленные Nа + -каналы, которые открываются на короткое время при действии на клетку химических, электрических или других сигналов. Открытие Nа + -каналов вы­зывает изменение трансмембранного потенциала (деполяризацию мембра­ны) и специфический ответ клетки на действие сигнала.

электрогенными насосами.

характеризуется тем, что транспорти­руемые вещества на определенных ста­диях транспорта располагаются внутри мембранных пузырьков, то есть ока­зываются окруженными мембраной.

22. Транспорт веществ через мембрану. Активный и пассивный транспорт

В зависимости от того, в каком направ­лении переносятся вещества (в клетку или из нее), транспорт в мембранной упаковке подразделяется на эндоцитоз и экзоцитоз.

Эндоцитозом

Фагоцитоз -

псевдоподии, фагосомой.

Пиноцитоз

Окаймленные ямки клатрина. окаймленный пузырек,

Экзоцитоз

Конститутивный экзоцитоз

Регулируемый экзоцитоз

В ходе экзоцитоза сформировавши­еся в цитоплазме секреторные пузырьки обычно направляются к специализиро­ванным участкам поверхностного аппарата, содержащим большое количество фузионных белков или белков слияния. При взаимодействии белков слияния плазмалеммы и секреторного пузырька образуется фузионная пора, соединяю­щая полость пузырька с внеклеточной средой. При этом активируется актомиозиновая система, в результате чего со­держимое пузырька изливается из него за пределы клетки. Таким образом, при индуцируемом экзоцитозе энергия тре­буется не только для транспорта секре­торных пузырьков к плазмалемме, но и для процесса секреции.

Трансцитоз , или рекреция , -

Способы транспорта веществ через мембрану.

Большинство процессов жизнедеятельности, таких, как всасывание, выделение, проведение нервного импульса, мышечное сокращение, синтез АТФ, поддержание постоянства ионного состава и содержания воды связано с переносом веществ через мембраны. Этот процесс в биологических системах получил название транспорта . Обмен веществ между клеткой и окружающей её средой происходит постоянно. Механизмы транспорта веществ в клетку и из неё зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме пассивного и активного транспорта.

Пассивный транспорт осуществляется без затрат энергии, по градиенту концентрации путем простой диффузии, фильтрации, осмоса или облегченной диффузии.

Диффузия – проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже); этот процесс происходит без затрат энергии вследствие хаотического движения молекул. Диффузный транспорт веществ (вода, ионы) осуществляется при участии интегральных белков мембраны, в которых имеются молекулярные поры (каналы, через которые проходят растворенные молекулы и ионы), либо при участии липидной фазы (для жирорастворимых веществ). С помощью диффузии в клетку проникают растворенные молекулы кислорода и углекислого газа, а также яды и лекарственные препараты.

Виды транспорта через мембрану.1 – простая диффузия; 2 – диффузия через мембранные каналы; 3 – облегченная диффузия с помощью белков-переносчиков; 4 – активный транспорт.

Облегченная диффузия. Транспорт веществ через липидный бислой с помощью простой диффузии совершается с малой скоростью, особенно в случае заряженных частиц, и почти не контролируется. Поэтому в процессе эволюции для некоторых веществ появились специфические мембранные каналы и мембранные переносчики, которые способствуют повышению скорости переноса и, кроме того, осуществляют селективный транспорт.

Пассивный транспорт веществ с помощью переносчиков называется облегченной диффузией . Специальные белки-переносчики (пермеаза) встроены в мембрану. Пермеазы избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом частицы перемещаются быстрее, чем при обычной диффузии.

Осмос – поступление в клетки воды из гипотонического раствора.

Фильтрация просачивание веществ поры в сторону меньших значений давления. Примером фильтрации в организме является перенос воды через стенки кровеносных сосудов, выдавливание плазмы крови в почечные канальцы.

Рис. Движение катионов по электрохимическому градиенту.

Активный транспорт. Если бы в клетках существовал только пассивный транспорт, то концентрации, давления и др. величины вне и внутри клетки сравнялись бы. Поэтому существует другой механизм, работающий в направлении против электрохимического градиента и происходящий с затратой энергии клеткой. Перенос молекул и ионов против электрохимического градиента, осуществляемый клеткой за счет энергии метаболических процессов, называется активным транспортом.Он присущ только биологическим мембранам. Активный перенос вещества через мембрану происходит за счет свободной энергии, высвобождающейся в ходе химических реакций внутри клетки. Активный транспорт в организме создает градиенты концентраций, электректрических потенциалов, давлений, т.е. поддерживает жизнь в организме.

Активный транспорт заключается в перемещении веществ против градиента концентрации с помощью транспортных белков (порины, АТФ-азы и др.), образующих мембранные насосы, с затратой энергии АТФ (калий-натриевый насос, регуляция концентрации в клетках ионов кальция и магния, поступление моносахаридов, нуклеотидов, аминокислот). Изучены 3 основные системы активного транспорта, которые обеспечивают перенос ионов Na, K, Ca, H через мембрану.

Механизм. Ионы К + и Na + неравномерно распределены по разные стороны мембраны: концентрация Na + снаружи > ионов K + , а внутри клетки K + > Na + . Эти ионы диффундируют через мембрану по направлению электрохимического градиента, что приводит к его выравниванию. Na-K насосы входят в состав цитоплазматических мембран и работают за счет энергии гидролиза молекул АТФ с образованием молекул АДФ и неорганического фосфата Ф н : АТФ=АДФ+Ф н. Насос работает обратимо: градиенты концентраций ионов способствуют синтезу молекул АТФ из мол-л АДФ и Ф н: АДФ+Ф н =АТФ.

Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как «K + », так и «Na + ».

Мембранный транспорт

За один цикл работы насос выводит из клетки три «Na + » и заводит два «К + » за счет энергии молекулы АТФ. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.

Через мембрану могут переноситься не только отдельные молекулы, но и твердые тела (фагоцитоз ), растворы (пиноцитоз ). Фагоцитоз захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Образующиеся пиноцитозные вакуоли имеют размеры от 0,01 до 1-2 мкм. Затем вакуоль погружается в цитоплазму и отшнуровывается. При этом стенка пиноцитозной вакуоли полностью сохраняет структуру породившей ее плазматической мембраны.

Если вещество транспортируется внутрь клетки, то такой вид транспорта называется эндоцитозом (перенос в клетку путем прямого пино-или фагоцитоза), если наружу, то – экзоцитозом (перенос из клетки путем обратного пино — или фагоцитоза). В первом случае на наружной стороне мембраны образуется впячивание, которое постепенно превращается в пузырек. Пузырек отрывается от мембраны внутри клетки. Такой пузырек содержит в себе транспортируемое вещество, окруженное билипидной оболочкой (везикулой). В дальнейшем везикула сливается с какой-нибудь клеточной органеллой и выпускает в неё своё содержимое. В случае экзоцитоза процесс происходит в обратной последовательности: везикула подходит к мембране с внутренней стороны клетки, сливается с ней и выбрасывает своё содержимое в межклеточное пространство.

Пиноцитоз и фагоцитоз – принципиально сходные процессы, в которых можно выделить четыре фазы: поступление веществ путем пино-или фагоцитоза, их расщепление под действием ферментов выделяемых лизосомами, перенос продуктов расщепления в цитоплазму (вследствие изменения проницаемости мембран вакуолей) и выделение наружу продуктов обмена. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Предыдущая12345678Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Транспорт веществ через плазматическую мембрану

Барьерно-транспортная функция поверхностного аппарата клетки обе­спечивается избирательным переносом ионов, молекул и надмолекулярных структур в клетку и из нее. Транспорт через мембраны обеспечивает доставку питательных веществ и удаление ко­нечных продуктов обмена из клетки, секрецию, создание ионных градиентов и трансмембранного потенциала, под­держание в клетке необходимых значе­ний pH и др.

Механизмы транспорта веществ в клетку и из нее зависят от химиче­ской природы переносимого вещества и его концентрации по обе стороны клеточной мембраны, а также от разме­ров транспортируемых частиц. Малые молекулы и ионы транспортируются через мембрану путем пассивного или активного транспорта. Пере­нос макромолекул и крупных частиц осуществляется посредством транспор­та в «мембранной упаковке», то есть за счет образования окруженных мембра­ной пузырьков.

Пассивным транспортом называет­ся перенос веществ через мембрану по градиенту их концентрации без затра­ты энергии. Такой транспорт осущест­вляется посредством двух основных механизмов: простой диффузии и об­легченной диффузии.

Путем простой диффузии транспор­тируются малые полярные и неполяр­ные молекулы, жирные кислоты и дру­гие низкомолекулярные гидрофобные органические вещества. Транспорт мо­лекул воды через мембрану, осущест­вляемый путем пассивной диффузии, получил название осмоса. Примером простой диффузии служит транспорт газов через плазматическую мембрану эндотелиальных клеток кровеносных капилляров в окружающую их ткане­вую жидкость и обратно.

Гидрофильные молекулы и ионы, не способные самостоятельно прохо­дить через мембрану, транспортируются с помощью специфических мембранных транспортных белков. Такой механизм транспорта получил назва­ние облегченной диффузии.

Существуют два основных клас­са мембранных транспортных белков: белки-переносчики и белки-каналы. Молекулы переносимого вещества, связы­ваясь с белком-переносчиком, вызыва­ют его конформационные изменения, результатом чего служит перенос ука­занных молекул через мембрану. Об­легченная диффузия отличается высо­кой избирательностью по отношению к транспортируемым веществам.

Белки-каналы формируют запол­ненные водой поры, пронизывающие липидный бислой. Когда эти поры от­крыты, неорганические ионы или мо­лекулы транспортируемых веществ проходят сквозь них и таким образом переносятся через мембрану. Ионные каналы обеспечивают перенос при­мерно 10 6 ионов в секунду, что более чем в 100 раз превышает скорость транспорта, осуществляемого белками-переносчиками.

Большинство белков-каналов име­ет «ворота», которые открываются на короткое время, а затем закрываются. В зависимости от природы канала «во­рота» могут открываться в ответ на свя­зывание сигнальных молекул (лиганд-зависимые воротные каналы), измене­ние мембранного потенциала (потенциал-зависимые воротные каналы) или механическую стимуляцию.

Активным транспортом называ­ется перенос веществ через мембрану против их градиентов концентрации. Он осуществляется с помощью белков-переносчиков и требует затрат энергии, основным источником которой служит АТФ.

Примером активного транспорта, использующего энергию гидролиза АТФ для перекачки ионов Na + и К + че­рез мембрану клетки, служит работа натриево-калиевого насоса , обеспечи­вающего создание мембранного по­тенциала на плазматической мембране клеток.

Насос образован встроенными в биологические мембраны специфи­ческими белками-ферментами аденозинтрифосфатазами, катализирующи­ми отщепление остатков фосфорной кислоты от молекулы АТФ. В состав АТФаз входят: ферментный центр, ионный канал и структурные элемен­ты, препятствующие обратной утечке ионов в процессе работы насоса. На работу натриево-калиевого насоса рас­ходуется более 1/3 АТФ, потребляемой клеткой.

В зависимости от способности транспортных белков переносить один или несколько видов молекул и ионов пассивный и активный транспорт под­разделяются на унипорт и копорт, или сопряженный транспорт.

Унипорт - это транспорт, при кото­ром белок-переносчик функционирует только в отношении молекул или ионов одного вида. При копорте, или сопря­женном транспорте, белок-переносчик способен транспортировать одновре­менно два или более видов молекул или ионов. Такие белки-переносчики получили название копортеров , или сопряженных переносчиков. Различают два вида копорта: симпорт и антипорт. В случае симпорта молекулы или ионы транспортируются в одном направле­нии, а при антипорте - в противопо­ложных направлениях. По принципу ан­типорта работает, например, натриево­калиевый насос, активно перекачивая ионы Na + из клеток, а ионы К + внутрь клеток против их электрохимических градиентов.

Примером симпорта слу­жит реабсорбция клетками почечных канальцев глюкозы и аминокислот из первичной мочи. В первичной моче концентрация Na + всегда значитель­но выше, чем в цитоплазме клеток по­чечных канальцев, что обеспечивается работой натриево-калиевого насоса. Связывание глюкозы первичной мочи с сопряженным белком-переносчиком открывает Nа + -канал, что сопровожда­ется переносом ионов Na + из первичной мочи внутрь клетки по градиенту их концентрации, то есть путем пассивного транспорта. Поток ионов Na + , в свою очередь, вызывает изменения конфор­мации белка-переносчика, результатом чего служит транспорт глюкозы в том же направлении, что и ионов Na + : из первичной мочи внутрь клетки. В данном случае для транспорта глюкозы, как можно убедиться, сопряженный переносчик использует энергию гра­диента ионов Na + , создаваемую рабо­той натриево-калиевого насоса. Таким образом, работа натриево-калиевого насоса и сопряженного переносчика, использующего для транспорта глюкозы градиент ионов Na + , позволяет реабсорбировать практически всю глюкозу из первичной мочи и включить ее в об­щий метаболизм организма.

Благодаря избирательному транс­порту заряженных ионов плазмалемма почти всех клеток несет на своей наруж­ной стороне положительный, а на вну­тренней цитоплазматической стороне - отрицательный заряды. В результате этого между обеими сторонами мембра­ны создается разность потенциалов.

Формирование трансмембранного потенциала достигается в основном за счет работы встроенных в плазмалемму транспортных систем: натриево­калиевого насоса и белков-каналов для ионов К + .

Как отмечалось выше, в процес­се работы натриево-калиевого насо­са на каждые два поглощенных клет­кой иона калия из нее выводится три иона натрия. В результате снаружи клеток создается избыток ионов Na + , а внутри - избыток ионов К + . Однако еще более значимый вклад в создание трансмембранного потенциала вносят калиевые каналы, которые в клетках, находящихся в состоянии покоя, всег­да открыты. Благодаря этому ионы К + выходят по градиенту концентрации из клетки во внеклеточную среду. В ре­зультате этого между двумя сторонами мембраны возникает разность потен­циалов от 20 до 100 мВ. Плазмалемма возбудимых клеток (нервных, мы­шечных, секреторных) наряду с К + — каналами содержит многочисленные Nа + -каналы, которые открываются на короткое время при действии на клетку химических, электрических или других сигналов.

Открытие Nа + -каналов вы­зывает изменение трансмембранного потенциала (деполяризацию мембра­ны) и специфический ответ клетки на действие сигнала.

Транспортные белки, которые ге­нерируют разность потенциалов на мембране, называются электрогенными насосами. Натриево-калиевый насос служит главной электрогенной помпой клеток.

Транспорт в мембранной упаковке характеризуется тем, что транспорти­руемые вещества на определенных ста­диях транспорта располагаются внутри мембранных пузырьков, то есть ока­зываются окруженными мембраной. В зависимости от того, в каком направ­лении переносятся вещества (в клетку или из нее), транспорт в мембранной упаковке подразделяется на эндоцитоз и экзоцитоз.

Эндоцитозом называется процесс поглощения клеткой макромолекул и более крупных частиц (вирусов, бак­терий, фрагментов клеток). Эндоцитоз осуществляется путем фагоцитоза и пиноцитоза.

Фагоцитоз - процесс активного за­хвата и поглощения клеткой твердых микрочастиц, размер которых состав­ляет более 1 мкм (бактерий, фрагмен­тов клеток и др.). В ходе фагоцитоза клетка с помощью специальных ре­цепторов распознает специфические молекулярные группировки фагоци­тируемой частицы.

Затем в месте кон­такта частицы с мембраной клетки образуются выросты плазмалеммы - псевдоподии, которые обволакивают микрочастицу со всех сторон. В резуль­тате слияния псевдоподий такая части­ца оказывается заключенной внутри пузырька, окруженного мембраной, который называется фагосомой. Обра­зование фагосом - энергозависимый процесс и протекает с участием актомиозиновой системы. Фагосома, погру­жаясь в цитоплазму, может сливаться с поздней эндосомой или лизосомой, в результате чего поглощенная клеткой органическая микрочастица, например бактериальная клетка, переваривает­ся. У человека к фагоци­тозу способны только немногие клетки: например, макрофаги соединительной ткани и лейкоциты крови. Эти клетки поглощают бактерии, а также разнооб­разные твердые частицы, попавшие в организм, и тем самым защищают его от болезнетворных микроорганизмов и посторонних частиц.

Пиноцитоз - поглощение клеткой жидкости в виде истинных и коллоид­ных растворов и суспензий. Этот про­цесс в общих чертах сходен с фагоцито­зом: капля жидкости погружается в об­разовавшееся углубление клеточной мембраны, окружается ею и оказывает­ся заключенной в пузырек диаметром 0,07-0,02 мкм, погруженный в гиало­плазму клетки.

Механизм пиноцитоза весьма сло­жен. Этот процесс осуществляется в специализированных областях по­верхностного аппарата клетки, назы­ваемых окаймленными ямками, ко­торые занимают около 2% клеточной поверхности. Окаймленные ямки пред­ставляют собой небольшие впячивания плазмалеммы, рядом с которыми в пе­риферической гиалоплазме находится большое количество белка клатрина. В области окаймленных ямок на по­верхности клеток располагаются также многочисленные рецепторы, способные специфически распознавать и связы­вать транспортируемые молекулы. При связывании рецепторами указанных молекул происходит полимеризация клатрина, и плазмалемма впячивается. В результате образуется окаймленный пузырек, несущий в себе транспортируе­мые молекулы. Свое название такие пу­зырьки получили благодаря тому, что клатрин на их поверхности под элек­тронным микроскопом выглядит как неровная каемка. После отделения от плазмалеммы окаймленные пузырьки теряют клатрин и приобретают способ­ность сливаться с другими пузырьками. Процессы полимеризации и деполи­меризации клатрина требуют затрат энергии и блокируются при недостатке АТФ.

Пиноцитоз, благодаря высокой кон­центрации рецепторов в окаймленных ямках, обеспечивает избирательность и эффективность транспорта специфи­ческих молекул. Например, концен­трация молекул транспортируемых ве­ществ в окаймленных ямках в 1000 раз превышает концентрацию их в окру­жающей среде. Пиноцитоз - основной способ транспорта в клетку белков, ли­пидов и гликопротеинов. Посредством пиноцитоза клетка поглощает за сутки количество жидкости, равное своему объему.

Экзоцитоз - процесс выведения веществ из клетки. Вещества, подлежа­щие выведению из клетки, сначала за­ключаются в транспортные пузырьки, наружная поверхность которых, как правило, покрыта белком клатрином, затем такие пузырьки направляются к клеточной мембране. Здесь мембрана пузырьков сливается с плазмалеммой, а содержимое их изливается за пределы клетки либо, сохраняя связь с плазма­леммой, включается в гликокаликс.

Существуют два типа экзоцитоза: кон­ститутивный (основной) и регулируемый.

Конститутивный экзоцитоз непре­рывно протекает во всех клетках орга­низма. Он служит основным механиз­мом выведения из клетки продуктов метаболизма и постоянного восстанов­ления клеточной мембраны.

Регулируемый экзоцитоз осущест­вляется лишь в специальных клетках, выполняющих секреторную функцию. Выделяемый секрет накапливается в секреторных пузырьках, а экзоцитоз происходит только после получения клеткой соответствующего химическо­го или электрического сигнала. Напри­мер, β-клетки островков Лангерганса пожелудочной железы выделяют свой секрет в кровь лишь при повышении в крови концентрации глюкозы.

В ходе экзоцитоза сформировавши­еся в цитоплазме секреторные пузырьки обычно направляются к специализиро­ванным участкам поверхностного аппарата, содержащим большое количество фузионных белков или белков слияния. При взаимодействии белков слияния плазмалеммы и секреторного пузырька образуется фузионная пора, соединяю­щая полость пузырька с внеклеточной средой.

При этом активируется актомиозиновая система, в результате чего со­держимое пузырька изливается из него за пределы клетки. Таким образом, при индуцируемом экзоцитозе энергия тре­буется не только для транспорта секре­торных пузырьков к плазмалемме, но и для процесса секреции.

Трансцитоз , или рекреция , - это транспорт, при котором происходит пе­ренос отдельных молекул через клетку. Указанный вид транспорта достигается за счет сочетания эндо- и экзоцитоза. Примером трансцитоза служит транс­порт веществ через клетки сосудистых стенок капилляров человека, который может осуществляться как в одном, так и в другом направлениях.