Осторожно, тяжелая вода! Тяжелая вода, ее получение и свойства Что такое тяжелая вода

Производство тяжёлой воды является весьма трудоёмким и дорогостоящим процессом. Изучив историю открытия дейтериевой воды, поначалу можно подумать, что в её получении нет ничего сложного. Дело в том, что основным и фактически единственным способом создания тяжёлой воды является электролиз обычной воды. Электролиз, как всем известно, это пропускание электрического тока через жидкость или раствор, в результате которых на электродах происходят химические реакции, приводящие к получению новых веществ. Получение тяжёлой воды это, по сути, стандартный процесс электролиза, в результате которого в остатках электролита и появляется то самое заветное вещество с тяжёлыми изотопами водорода.

Сложность в том, что для получения хотя бы микроскопического объёма тяжёлой воды необходимо произвести электролиз большого объёма воды обычной. В обычной воде недостатка нет - а вот электроэнергия, необходимая для электролиза, стоит денег. Когда энергии требуется много, она стоит больших денег. Электролиз для получения тяжёлой воды стоит именно много денег - получение одного грамма дейтериевой воды в настоящее время обходится в расходование энергии стоимостью примерно 20 долларов США. При этом получения вещества проходит в два этапа: сначала путём реакции с обычной водой получается жидкость с концентрацией тяжёлой воды около 10%. Затем повторная процедура электролиза этого раствора приводит к получению чистой, почти стопроцентной, тяжёлой воды.

Разумеется, никто бы не производил таких сложных и дорогостоящих манипуляций ради чисто познавательного интереса по получению необычного вещества, внешне так похожего на привычную нам воду. Дело в том, что основа современной атомной энергетики это реакторы на тяжёлой воде. В ходе изучения свойств этого вещества выяснилось, что дейтериевая вода обладает потрясающими свойствами в реакциях с нейтронами, которые и являются «рабочими лошадками» в ядерных реакторах. Для реакторов определяющими являются два требования: во-первых, чтобы нейтроны не «разгонялись» слишком быстро, иначе их невозможно будет удержать и начнётся неконтролируемая ядерная реакция. Во-вторых, чтобы нейтрализующая среда, которая призвана тормозить нейтроны, не поглощала их, то есть не снижала энергетическую мощность реакции. Реактор на тяжёлой воде оказался идеальным решением обоих задач. Дейтериевая вода является непревзойдённым замедлителем нейтронов: для сравнения - коэффициент замедления нейтронов у обычной воды равен 61, а у тяжёлой воды он составляет 5700. К тому же это вещество не поглощает нейтроны (вернее поглощает, но в очень малом количестве), что позволяет поддерживать стабильный уровень получения энергии в реакторе.

Дейтерий обладает сечением захвата, примерно в тысячу раз меньшим, чем природный водород, и соответственно увеличенной способностью замедлять нейтроны. Таким образом, реакторы на тяжелой воде могут работать на природном уране, не требуя более дорогого обогащенного ураном-235 топливного материала, который необходим при обычной воде. До настоящего времени высокая стоимость тяжелой воды ограничивала ее использование. Недавно испытанная конструкция реактора, в котором в качестве охладителя применена вода и вместе с тем исключена проблема увеличения давления, получает ее большее одобрение. Это -- реактор типа «водяной котел», в котором воде предоставляется возможность кипеть в активной зоне. В реакторе используется скрытая теплота кипения воды. Такая система имеет много достоинств, главным из которых является непосредственное образование пара и устранение теплообменников, а также сокращение затрат энергии на перекачку наряду с упомянутым устранением усложнений, возникающих при увеличении давления. Кроме того, было найдено, что образование пузырьков пара приводит к тому, что реактор может стать самоуправляющимся.

Тяжёлая вода (HDO) по своим химическим и теплофизическим свойствам мало отличается от обычной воды. Она практически не поглощает нейтронов, что даёт возможность использовать в качестве ядерного топлива природный уран в реакторах с тяжеловодным замедлителем. Недостатки: редкая распространённость в природе, энергоёмкая и дорогостоящая технология получения чистой тяжёлой воды (0.5% примесей в тяжёлой воде снижают коэффициент замедления её почти на порядок). Тяжёлая вода замедлитель нейтронов в канадском канальном граффито-водном реакторе КАНДУ.

Критическая температура=644,05 К; Критическое давление=21,86 МПа; Плотность=1104 кг/мі; Температура кипения=101,43° С; Температура плавления=3,813° С; Молярная изобарная теплоемкость=84,3 Дж/моль·К, и 34,4 Дж/моль·К (газ)

По своим свойствам тяжелая вода заметно отличается от обычной воды (таблица). Реакции с тяжелой водой протекают медленнее, чем с обычной. Тяжелую воду применяют в качестве замедлителя нейтронов в ядерных реакторах.

Таблица 1 - Сравнение обычной и тяжелой вода

Эта вода, которая имеет всем хорошо знакомую формулу, но вместо «классических» атомов водорода в ее состав входят его тяжелые изотопы – дейтерий. Внешне тяжелая вода ничем не отличается от обычной, это такая же бесцветная жидкость, не имеющая вкуса, запаха. Дейтерий в больших количествах оказывает крайне негативное влияние на все живое и на человеческий организм в частности. Изотопы способны повреждать гены уже на стадии полового созревания. В результате развивается рак, иные болезни, человек очень быстро стареет. Распространение тяжелой воды приведет к повсеместному изменению генофонда, что вызовет гибель не только людей, но животных, растений.

Впервые молекулы с «тяжелым» водородом обнаружили в 1932-м году (Гарольд Клейтон Юри). Уже в следующем году Г.Льюис получил тяжеловодородную воду в чистом виде (в природе подобная жидкость не встречается). Тяжелая вода имеет свои свойства, несколько отличающиеся от параметров обычной воды:
- температура закипания: 101,43С;
- температура таяния: 3,81С;
- плотность при 25С: 1,1042 г/куб. см.

Тяжелая вода замедляет химические реакции, т.к. водородные связи, в которых участвует дейтерий, сильнее обычных. К гибели млекопитающих приводят лишь большие концентрации дейтерия (замещение обычной воды тяжелой на 25% и более). Например, для человека стакан тяжелой воды безвреден - дейтерий полностью «выйдет» из организма через 3-5 дней.

Легкая вода

Это жидкость, свободная от изотопа водорода дейтерия. Получить ее в чистом виде непросто; в той или иной концентрации дейтерий встречается в любой воде, в т.ч. и природной. Наименьшее процентное содержание тяжелого изотопа водорода – в талой воде из ледников и горных рек; всего 0,015%. Чуть больше дейтерия в антарктическом льде – 0,03%. Легкую воду «изготавливают» из тяжелой разными способами: вакуумной заморозкой, ректификацией, центрифугированием, изотопным обменом.

Легкая вода чрезвычайно полезна человеческому организму, ее постоянный прием нормализует работу клеток в плане метаболизма (обмена веществ). У человека повышается работоспособность, организм быстро после физических нагрузок и эффективно очищается от шлаков, токсинов. Легкая вода обладает противовоспалительным эффектом, способствует коррекции веса и даже устраняет посталкогольную абстиненцию. Впервые данные о положительном влиянии легкой воды на живые организмы получили российские ученые Варнавский И. Н. и Бердышев Г.Д.

Видео по теме

Даже самому далекому от науки человеку наверняка хоть раз приходилось слышать термин «тяжелая вода». По-другому она может называться «дейтериевой водой». Что же это такое, как вообще может всем известная вода быть тяжелой?

Все дело в том, что водород, оксид которого и является водой, в существует в виде трех различных изотопов. Первый из них и самый распространенный – протий. В состав ядра его атома входит единственный . Он-то, соединяясь с кислородом, образует волшебное вещество Н2О, без которого жизнь была бы невозможной.

Второй, гораздо менее распространенный, изотоп водорода называется дейтерий. Ядро его атома состоит не только из протона, но и из нейтрона. Поскольку массы нейтрона практически одинаковы, а масса электрона неизмеримо меньше, легко можно понять, что атом дейтерия вдвое тяжелее, чем атом протия. Соответственно, молярная масса оксида дейтерия D2O составит не 18 грамм/моль, как у обычной воды, а 20. Внешний же вид тяжелой воды точно такой же: бесцветная прозрачная жидкость без вкуса и запаха.

Третий же изотоп - тритий, содержащий в атомном ядре один протон и два нейтрона, еще более . И вода, имеющая формулу Т2О, называется «сверхтяжелой».

Чем еще помимо разницы в изотопах, отличается тяжелая вода от обычной? Она несколько более плотная (1104 кг/кубический метр) и кипит при чуть более высокой температуре (101,4 градуса). Большая плотность является еще одной причиной для названия. Но самая существенная заключается в том, что тяжелая вода является ядом для высших организмов (млекопитающих, включая человека, птиц, рыб). Разумеется, разовое потребление незначительного количества этой жидкости не нанесет существенного вреда здоровью человека, тем не менее, она непригодна для питья.

Главное применение тяжелой воды – в атомной энергетике. Она служит для торможения нейтронов и в качестве теплоносителя. Используется также в физике элементарных частиц и некоторых областях медицины.

Интересный факт: в годы Второй Мировой войны гитлеровцы пытались создать атомную бомбу, используя для экспериментального производства именно эту жидкость, наработанную на одном из заводов в Веморке (Норвегия). Чтобы сорвать их планы, было совершено несколько попыток диверсии на заводе; одна из них, в феврале 1943 года, увенчалась успехом.

Содержание статьи

ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА. Дейтерий (тяжелый водород) – один из двух стабильных изотопов водорода , ядро которого состоит из одного протона и одного нейтрона. Молекула D 2 – двухатомна. Содержание в природном водороде – 0,012–0,016%. Температура плавления – 254,5° С, температура кипения – 249,5° С. Тяжелая вода D 2 O (оксид дейтерия) – изотопная разновидность воды; плотность 1,1, температура плавления – 3,8° С, температура кипения – 101,4° С.

В 1932 одно за другим следовали выдающиеся открытия в области физики: были открыты нейтрон и позитрон, разработана протоно-нейтронная теория строения ядер и релятивистская квантовая механика, построен первый циклотрон и изобретен электронный микроскоп, проведена первая реакция ядерного синтеза, экспериментально измерена скорость движения молекул. Недаром физики назвали этот год anno mirabilis – год чудес. В этом же году был открыт и второй изотоп водорода, названный дейтерием (от греческого deuteros – второй, символ D).

Открытие дейтерия может служить прекрасной иллюстрацией к парадоксальному на первый взгляд высказыванию французского физикохимика Анри Ле Шателье , обращенному к ученикам: «Ошибкой не только начинающих исследователей, но многих немолодых, весьма опытных и зачастую талантливых ученых является то, что они устремляют свое внимание на разрешение очень сложных проблем, для чего еще недостаточно подготовлена почва. Если вы хотите сделать нечто действительно большое в науке, если вы хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные и порой неожиданные данные».

Действительно, что можно было ожидать от исследования физических свойств обыкновенной чистой воды – они были изучены, как говорится, вдоль и поперек еще в 19 в. Вспомним однако, что проведенные в 1893 рутинные определения плотности газообразного азота, полученного разными методами (литр азота из воздуха весил 1,257 г, а полученного химическим путем – 1,251 г), привели к выдающемуся открытию – сначала аргона, а за ним и других благородных газов.

Можно ли было надеяться обнаружить нечто новое в обычной воде? В начале 19 в. лондонский врач и химик Уильям Праут опубликовал гипотезу, согласно которой из самого легкого элемента – водорода могли возникнуть все остальные элементы путем конденсации. В этом случае атомные массы всех элементов должны быть кратны массе атома водорода. Определения атомных масс, которые оказались дробными, эту гипотезу не подтвердили, и химики 19 в. часто осмеивали ее как лишенную научного содержания (см . ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА).

В 1917 немецкий ученый К.Шерингер предположил, что атомы разных элементов построены не только из протия (от греческого protos – первый), т.е. «легкого» водорода с атомной массой 1, а из разных изотопов водорода. К тому времени уже было известно, что один и тот же элемент может иметь изотопы с разной массой. Впечатляющих успехов в открытии большого числа изотопов нерадиоактивных элементов достиг английский физик Фрэнсис Уильям Астон с помощью сконструированного им масс-спектрографа. В этом приборе изучаемые атомы или молекулы бомбардируются пучком электронов и превращаются в положительно заряженные ионы. Пучок этих ионов далее подвергается действию электрического и магнитного поля, и их траектории отклоняются от прямой. Это отклонение тем сильнее, чем больше заряд иона и чем меньше его масса. Из значений отклоняющих напряжений непосредственно получают относительные массы ионов. А из интенсивности пучка ионов с данной массой можно судить об относительном содержании в образце этих ионов.

Гипотеза Шерингера предполагала, что и у самого легкого элемента – водорода тоже могут быть изотопы. Однако попытки обнаружить «второй», тяжелый водород, предпринятые в 1919 Отто Штерном и Максом Фольмером, оказались безуспешными. Не удалось обнаружить его и Астону. Это означало одно из двух: либо у водорода тяжелого изотопа вовсе нет, либо его содержание в природном водороде слишком мало и чувствительности имевшегося в распоряжении Астона прибора недостаточно для его обнаружения. Правильным оказалось второе предположение, однако тяжелый водород прятался от исследователей в течение еще многих лет, маскируясь под ошибки эксперимента.

В 1927 Астон очень точно для того времени измерил отношение масс атомов водорода и кислорода-16; у него получилось 1,00778:16,0000, что, казалось, находится в прекрасном соответствии с результатами самых точных измерений атомной массы водорода химическим путем: у химиков это отношение получалось равным 1,00777:16,0000. Однако такое единодушие физиков и химиков было недолгим: оказалось, что природный кислород, с которым работали химики, – плохой эталон для измерения атомных масс, поскольку кислород представляет собой смесь изотопов, причем их относительное содержание в разных источниках не вполне постоянно. Точные измерения в начале 30-х соотношения 18 O: 16 O = 1:630 существенным образом изменили все прежние расчеты и данные об атомных массах. Пришлось в срочном порядке отказываться от «химической» шкалы атомных масс и переходить на «физическую» шкалу, основанную на кислороде-16. Такой пересчет данных химических анализов дал отношение масс Н: 16 О = 1,00799:16,0000, что уже заметно отличалось от измерений Астона. Кто же ошибся – физики или химики, выполнившие определения атомных масс? И те и другие ручались за точность своих определений, расхождение в результатах далеко выходило за пределы экспериментальных ошибок.

В 1931 было высказано предположение о том, что причина небольшого расхождения – наличие в обычном водороде более тяжелого изотопа. Расчеты показали, что расхождение устраняется в том случае, если на 5000 атомов обычного водорода 1 H приходится всего один атом его вдвое более тяжелой разновидности 2 Н. Дело оставалось за малым – обнаружить этот изотоп экспериментально. Но как это сделать, если его действительно так мало? С учетом чувствительности имевшейся в то время аппаратуры выход был один: сконцентрировать тяжелый водород, увеличив тем самым его содержание в обычном водороде, – примерно так же, как концентрируют спирт, перегоняя его смесь с водой. Если перегонять смесь обычного и тяжелого водорода, остаток должен обогащаться более тяжелым изотопом. После этого можно было снова попытаться обнаружить тяжелый изотоп водорода аналитически.

В конце 1931 группа американских физиков – Гарольд Юри со своими учениками, Фердинандом Брикведде и Джорджем Мерфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Талантливый спектроскопист Гарольд Клейтон Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету предполагаемого атома 2 H. Соотношение интенсивностей линий нового изотопа (Юри назвал его дейтерием) и обычного водорода показало, что в исследованном обогащенном образце нового изотопа в 800 раз меньше, чем обычного водорода. Значит, в исходном водороде тяжелого изотопа еще меньше. Но насколько?

Пытаясь оценить так называемый коэффициент обогащения при испарении жидкого водорода, исследователи поняли, что в своих опытах использовали самый неподходящий источник водорода. Дело в том, что он был получен, как обычно, путем электролиза воды. А ведь при электролизе легкий водород должен выделяться быстрее, чем тяжелый. Получается, что образец был сначала обеднен тяжелым водородом, а затем снова обогащался им!

После того, как дейтерий был обнаружен спектроскопически, Эдвард Уошберн предложил разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Юри была присуждена Нобелевская премия по химии. (Уошберн тоже был представлен к премии, но скончался в том же году, а по положению о Нобелевских премиях они вручаются только прижизненно.)

Когда был открыт нейтрон, стало ясно, что в ядре дейтерия, в отличие от протия, помимо протона находится также нейтрон. Поэтому ядро дейтерия – дейтрон вдвое тяжелее протона; его масса в углеродных единицах равна 2,0141018. В среднем в природном водороде содержится 0,0156% дейтерия. В прибрежной морской воде его немного больше, в поверхностных водах суши – меньше, в природном газе – еще меньше (0,011–0,013%). По химическим свойствам дейтерий схож с протием, но огромное различие в их массах приводит к заметному замедлению реакций с участием атомов дейтерия. Так, реакция дейтерированного углеводорода R–D с хлором или кислородом замедляется, в зависимости от температуры, в 5–10 раз по сравнению с реакцией R–Н. С помощью дейтерия можно «пометить» водородсодержащие молекулы и изучить механизмы их реакций. Так, в частности, были изучены реакции синтеза аммиака, окисления углеводородов, ряд других важных процессов.

Тяжелая вода.

После фундаментальных работ Уошберна и Юри исследования нового изотопа стали развиваться быстрыми темпами. Уже вскоре после открытия дейтерия в природной воде была обнаружена ее тяжелая разновидность. Обычная вода состоит в основном из молекул 1 Н 2 О. Но если в природном водороде есть примесь дейтерия, то и в обычной воде должны быть примеси НDO и D 2 O. И если при электролизе воды Н 2 выделяется с большей скоростью, чем НD и D 2 , то со временем в электролизере должна накапливаться тяжелая вода. В 1933 Гилберт Льюис и американский физикохимик Роналд Макдональд сообщили, что в результате длительного электролиза обычной воды им удалось получить не виданную никем до этого новую разновидность воды – тяжелую воду.

Открытие и выделение весовых количеств новой разновидности воды – D 2 O произвело большое впечатление на современников. Всего за два года после открытия было опубликовано более сотни работ, посвященных исключительно тяжелой воде. О ней читались популярные лекции, печатались статьи в массовых изданиях. Практически сразу же после открытия тяжелую воду стали использовать в химических и биологических исследованиях. Так, было обнаружено, что рыбы, микробы и черви не могут существовать в ней, а животные погибают от жажды, если их поить тяжелой водой. Не прорастают в тяжелой воде и семена растений.

Однако технически получение значительных количеств D 2 О представляло собой трудную задачу. Для обогащения воды дейтерием на 99% необходимо уменьшить объем воды при электролизе в 100 тысяч раз. Льюис и Макдональд взяли для своих опытов 10 л воды из проработавшей несколько лет большой электролитической ванны, в которой содержание дейтерия было повышенным. Пропуская через эту воду ток большой силы – 250 ампер (для увеличения электропроводности вода содержала щелочь), они за неделю уменьшили ее объем в 10 раз. Чтобы жидкость при электролизе таким огромным током не закипела, ее приходилось непрерывно охлаждать холодной водой, пропускаемой по металлическим трубкам внутри электролизера. Остаток объемом 1 л перенесли в электролизер поменьше и снова путем электролиза снизили объем в 10 раз. Затем в третьей ячейке объем был уменьшен до 10 мл, и, наконец, в четвертой он был доведен до 0,5 мл. Отогнав этот остаток в вакууме в небольшую колбочку, они получили воду, содержащую 31,5% D 2 O. Ее плотность (1,035) уже заметно отличалась от плотности обычной воды.

В следующей серии опытов из 20 л воды, также в несколько этапов, получили 0,5 мл воды с плотностью 1,075, содержащей уже 65,7% D 2 O. Продолжая такие опыты, удалось, наконец, получить 0,3 мл воды, плотность которой (1,1059 при 25° С) уже больше не увеличивалась при уменьшении объема при электролизе до 0,12 мл. Эти несколько капель и были первые за всю историю Земли капли почти чистой тяжелой воды. Соответствующие расчеты показали, что прежние оценки соотношения обычного и тяжелого водорода в природе были слишком оптимистическими: оказалось, что в обычной воде содержится всего 0,017% (по массе) дейтерия, что дает соотношение D:Н = 1:6800.

Чтобы получать заметные количества тяжелой воды, необходимой ученым для исследований, необходимо было подвергать электролизу уже огромные по тем временам объемы обычной воды. Так, в 1933 группе американских исследователей для получения всего 83 мл D 2 O 99%-ой чистоты пришлось взять уже 2,3 тонны воды, которую разлагали в 7 стадий. Было ясно, что такими методами ученые не смогут обеспечить всех желающих тяжелой водой. А тут выяснилось, что тяжелая вода является прекрасным замедлителем нейтронов и потому может быть использована в ядерных исследованиях, в том числе для построения ядерных реакторов. Спрос на тяжелую воду вырос настолько, что стала ясна необходимость налаживания ее промышленного производства. Трудность состояла в том, что для получения 1 тонны D 2 O необходимо переработать около 40 тысяч тонн воды, израсходовав при этом 60 млн кВт-ч электроэнергии – столько уходит на выплавку 3000 т алюминия!

Первые полупромышленные установки были маломощными. В 1935 на установке в Беркли еженедельно получали 4 г почти чистой D 2 O, стоимость которой составляла 80 долларов за грамм – это очень дорого, если учесть, что за прошедшие годы доллар «подешевел» в десятки раз. Более эффективной была установка в химической лаборатории Принстонского университета – она давала ежедневно 3 г D 2 O ценой по 5 долларов за грамм (через 40 лет стоимость тяжелой воды снизилась до 14 центов за грамм). Наиболее трудоемким оказался самый первый этап электролиза, в котором концентрация тяжелой воды повышалась до 5–10%, поскольку именно на этом этапе приходилось перерабатывать огромные объемы обычной воды. Дальнейшее концентрирование можно было уже без особых проблем провести в лабораторных условиях. Поэтому преимущества получали те промышленные установки, которые могли подвергать электролизу большие объемы воды.

Теоретически можно вместо электролиза использовать простую перегонку, поскольку обычная вода испаряется легче, чем тяжелая (ее температура кипения 101,4° С). Однако этот способ еще более трудоемкий. Если при электролизе коэффициент разделения изотопов водорода (т.е. степень обогащения в одной стадии) теоретически может достигать 10, то при перегонке он составляет всего 1,03–1,05. Это означает, что разделение путем перегонки исключительно малоэффективно. Академик Игорь Васильевич Петрянов-Соколов как-то подсчитал, сколько воды должно испариться из чайника, чтобы в остатке заметно повысилось содержание дейтерия. Оказалось, что для получения 1 литра воды, в которой концентрация D 2 О всего в 10 раз превышает природную, в чайник надо долить в общей сложности 2,1O 30 тонн воды, что в 300 млн. раз превышает массу Земли!

Масса молекулы D 2 O на 11% превышает массу Н 2 О. Такая разница приводит к существенным различиям в физических, химических и, что особенно важно, биологических свойствах тяжелой воды. Тяжелая вода кипит при 101,44° С, замерзает при 3,82° С, имеет плотность при 20° С 1,10539 г/см 3 , причем максимум плотности приходится не на 4° С, как у обычной воды, а на 11,2° С (1,10602 г/см 3). Кристаллы D 2 O имеют такую же структуру, как и обычный лед, но они более тяжелые (0,982 г/см 3 при 0°С по сравнению с 0,917 г/см 3 для обычного льда). В смесях с обычной водой с большой скоростью происходит изотопный обмен: Н 2 О + D 2 O 2HDO. Поэтому в разбавленных растворах атомы дейтерия присутствуют в основном в виде HDO. В среде тяжелой воды значительно замедляются биохимические реакции, и эта вода не поддерживает жизни животных и растений.

В настоящее время разработан ряд эффективных методов получения тяжелой воды: электролизом, изотопным обменом, сжиганием обогащенного дейтерием водорода. В настоящее время тяжелую воду получают ежегодно тысячами тонн. Ее используют в качестве замедлителя нейтронов и теплоносителя в ядерных реакторах (для заполнения одного современного крупного ядерного реактора требуется 100–200 тонн тяжелой воды чистотой не менее 99,8%); для получения дейтронов D + в ускорителях частиц; как растворитель в спектроскопии протонного магнитного резонанса (обычная вода своими протонами смазывает картину). Не исключено, что роль тяжелой воды значительно возрастет, если будет осуществлен промышленный термоядерный синтез.

«Битва за воду».

Для промышленного получения тяжелой воды очень важно наличие дешевой электроэнергии. Уже в довоенные годы стало понятно, что идеальные условия для этого имеются в Норвегии, где давно работали мощные электролизные установки для получения водорода. Завод по производству тяжелой воды вошел в строй в 1934; к 1938 он производил 40 кг D 2 О в год, а в 1939 – второе больше. В то время уже стало очевидным огромное стратегическое значение тяжелой воды для разработки ядерного оружия. Поэтому не удивительно, что немцы, оккупировавшие Норвегию в мае 1940, приняли самые энергичные меры по засекречиванию завода тяжелой воды и его охране. К концу 1941 Германия вывезла из Норвегии 361 кг чистой D 2 O, а через год – уже 800 кг.

Союзники отдавали себе отчет в смертельной для себя опасности норвежского производства и потому решили во что бы то ни стало уничтожить завод. Главный инженер завода Йомар Брун с риском для жизни достал исключительно ценную информацию – чертежи и фотографии завода. Все материалы были пересняты на микропленку и в тюбике для зубной пасты переправлены через Швецию в Англию. Немцы ожидали нападения с воздуха на завод и усиленно укрепляли особо важные цеха. Поэтому было решено послать в Норвегию специально подготовленную команду подрывников. Диверсионной группе удалось взорвать электролизные баки в цехе концентрирования тяжелой воды. На восстановление оборудования ушло полгода – срок огромный в условиях войны. Немцы решили подстраховаться, и в мае 1943 их делегация, состоящая из ученых и промышленников, выехала в Италию, чтобы наладить там производство тяжелой воды на электролизном заводе в поселке Маренго на севере страны. Но было уже поздно: 3 сентября король Виктор-Эммануил III подписал на Сицилии акт о капитуляции Италии, а 9 сентября около Неаполя на территорию Италии вступили англо-американские войска. Так что норвежский завод оставался для немцев единственным источником тяжелой воды. Однако и он уже был обречен: 16 ноября на завод был произведен массированный воздушный налет. В течение 33 минут 140 тяжелых бомбардировщиков «Летающая крепость» сбросили на завод 800 бомб! В результате была выведена из строя гидроэлектростанция, однако установки для производства тяжелой воды, защищенные толстым слоем бетона, практически не пострадали. Не обошлось и без жертв среди мирного норвежского населения – погибло 22 человека.

Немцы понимали, что и после бомбежки союзники не оставят завод в покое, и потому приняли решение вывезти в Германию все имеющиеся запасы тяжелой воды – а было ее ни много ни мало 15 тонн! Разведка союзников сработала четко и своевременно: в результате тщательно продуманной и с блеском проведенной операции 20 февраля 1944 был взорван паром, на котором находились железнодорожные цистерны с тяжелой водой. Паром, переправлявшийся в этот момент через озеро Тинсьё, пошел на дно, и поднять его было практически невозможно, так как озеро было очень глубоким – около 400 м. И в этом эпизоде битвы за тяжелую воду не обошлось без трагедии: за уничтожение практически всего запаса тяжелой воды заплатили жизнью 14 норвежцев, находившихся на пароме. Но немцы лишились всякой возможности запустить ядерный реактор и получить атомную бомбу.

Илья Леенсон

1104,2 кг/м³, жидкость
1017,7 кг/м³, твёрдая (при н. у.) Растворимость Малорастворима в диэтиловом эфире ;
Смешивается с этанолом ;
C обычной водой смешивается
в любых пропорциях. удельная теплоёмкость 5,301(?) кДж/моль Точка плавления 3,81 °C (276,97 K) Точка кипения 101,43 °C (374,55 K) Константа диссоциации
кислоты (pK a) ? Вязкость 0,00125 Па·с (0,0125 пз) при 20 °C

Тяжёлая вода́ (также оксид дейтерия ) - обычно этот термин применяется для обозначения тяжёловодородной воды . Тяжёловодородная вода имеет ту же химическую формулу , что и обычная вода , но вместо атомов обычного лёгкого изотопа водорода (протия) содержит два атома тяжёлого изотопа водорода - дейтерия . Формула тяжёловодородной воды обычно записывается как D 2 O или ²H 2 O. Внешне тяжёлая вода выглядит как обычная - бесцветная жидкость без вкуса и запаха.

История открытия

Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в году, за что был отмечен Нобелевской премией по химии в 1934 году. А уже в году Гилберт Льюис выделил чистую тяжёловодородную воду.

Свойства

Свойства тяжёлой воды
Молекулярная масса 20,03 а.е.м.
Давление паров 10 мм. рт. ст. (при 13,1 °C), 100 мм. рт. ст. (при 54 °C)
Показатель преломления 1,32844 (при 20 °C)
Энтальпия образования ΔH −294,6 кДж/моль (ж) (при 298 К)
Энергия Гиббса образования G −243,48 кДж/моль (ж) (при 298 К)
Энтропия образования S 75,9 Дж/моль·K (ж) (при 298 К)
Мольная теплоёмкость C p 84,3 Дж/моль·K (жг) (при 298 К)
Энтальпия плавления ΔH пл 5,301 кДж/моль
Энтальпия кипения ΔH кип 45,4 кДж/моль
Критическое давление 21,86 МПа
Критическая плотность 0,363 г/см³

Нахождение в природе

В природных водах один атом дейтерия приходится на 6400 атомов протия. Почти весь он находится в составе молекул полутяжёлой воды DHO (см. ниже), одна такая молекула приходится на 3200 молекул лёгкой воды. Лишь очень незначительная часть атомов дейтерия формирует молекулы тяжёлой воды D 2 O, поскольку вероятность двух атомов дейтерия встретиться в составе одной молекулы в природе мала (примерно 0,5·10 −7). При искусственном повышении концентрации дейтерия в воде эта вероятность растёт.

Биологическая роль и физиологическое воздействие

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими (мыши, крысы, собаки) показали, что замещение 25 % водорода в тканях дейтерием приводит к стерильности, иногда необратимой. Более высокие концентрации приводят к быстрой гибели животного; так, млекопитающие, которые пили тяжёлую воду в течение недели, погибли, когда половина воды в их теле была дейтерирована; рыбы и беспозвоночные погибают лишь при 90% дейтерировании воды в теле. Некоторые микроорганизмы и грибы способны жить в 70 % растворе D 2 O в H 2 O и даже в чистой тяжёлой воде . Человек может без всякого вреда для здоровья выпить несколько стаканов тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней.
Таким образом, тяжёлая вода гораздо менее токсична, чем, например, поваренная соль . Тяжёлая вода использовалась для лечения артериальной гипертензии у людей в суточных дозах до 1,7 г дейтерия на кг веса пациента; этот метод запатентован (U.S. Patent 5223269 (англ.) ).

Некоторые сведения

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична . Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за литр).

Применение

Важнейшим свойством тяжёловодородной воды является то, что она практически не поглощает нейтроны , поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии , биологии и гидрологии . В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино ; так, крупнейший детектор солнечных нейтрино SNO (Канада) содержит 1 килотонну тяжёлой воды.

Другие виды тяжёлых вод

Полутяжёлая вода

Выделяют также полутяжёлую воду (известную также под названиями дейтериевая вода , монодейтериевая вода , гидроксид дейтерия ), у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO или ²HHO. Следует отметить, что вода, имеющая формальный состав DHO, вследствие реакций изотопного обмена реально будет состоять из смеси молекул DHO, D 2 O и H 2 O (в пропорции примерно 2:1:1). Это замечание справедливо и для THO и TDO.

Сверхтяжёлая вода

Основная статья : Сверхтяжёлая вода

Сверхтяжёлая вода содержит тритий , период полураспада которого более 12 лет. По своим свойствам сверхтяжёлая вода (T 2 O ) еще заметнее отличается от обычной: кипит при 104 °С, замерзает при +9 °С и имеет плотность 1,33 г/см 3 . Известны (то есть получены в виде более или менее чистых макроскопических образцов) все девять вариантов сверхтяжёлой воды: THO, TDO и T 2 O с каждым из трёх стабильных изотопов кислорода. Иногда сверхтяжёлую воду называют просто тяжёлой водой, если это не может вызвать путаницы. Сверхтяжёлая вода имеет высокую радиотоксичность.

Тяжёлокислородные изотопные модификации воды

Термин тяжёлая вода применяют также по отношению к тяжёлокислородной воде, у которой обычный лёгкий кислород 16 O заменён одним из тяжёлых стабильных изотопов 17 O или 18 O. Тяжёлые изотопы кислорода существуют в природной смеси, поэтому в природной воде всегда есть примесь обеих тяжёлокислородных модификаций.

Общее число изотопных модификаций воды

Если подсчитать все возможные нерадиоактивные соединения с общей формулой Н 2 О, то общее количество возможных изотопных модификаций воды всего девять (так как существует два стабильных изотопа водорода и три - кислорода):

  • Н 2 16 O − лёгкая вода , или просто вода
  • Н 2 17 O
  • Н 2 18 O − тяжёлокислородная вода
  • HD 16 O − полутяжёлая вода
  • HD 17 O
  • HD 18 O
  • D 2 16 O − тяжёлая вода
  • D 2 17 O
  • D 2 18 O

С учётом трития их число возрастает до 18. Таким образом, кроме обычной, наиболее распространённой в природе «лёгкой» воды 1 H 2 16 O, в общей сложности существует 8 нерадиоактивных (стабильных) и 9 слаборадиоактивных «тяжёлых вод».

Всего же общее число возможных «вод» с учётом всех известных изотопов водорода (7) и кислорода (17) формально равняется 476 (!). Однако распад почти всех радиоактивных изотопов водорода и кислорода происходит за секунды или доли секунды (важным исключением является тритий, период полураспада которого более 12 лет). Например, все более тяжёлые, чем тритий, изотопы водорода живут порядка 10 −20 с; за это время никакие химические связи просто не успевают образоваться, и, следовательно, молекул воды с такими изотопами не бывает. Тяжёлые радиоизотопы кислорода имеют периоды полураспада от нескольких десятков секунд до наносекунд. Поэтому макроскопические образцы воды с такими изотопами получить невозможно, хотя молекулы и микрообразцы могут быть получены.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Тяжелая вода" в других словарях:

    ТЯЖЕЛАЯ ВОДА - ТЯЖЕЛАЯ ВОДА, Н|0, D20, вода, образованная соединением с кислородом тяжелого изотопа (см.) водорода с атомным весом 2,0136 (символ Н2 или D deuterium, в отличие от водорода с атомным весом 1,00756 Н1 protium). Н2, а затем и Т. в. были впервые… … Большая медицинская энциклопедия

    - (оксид дейтерия, D2O), вода, в которой атомы водорода замещены ДЕЙТЕРИЕМ (изотоп ВОДОРОДА с ОТНОСИТЕЛЬНОЙ АТОМНОЙ МАССОЙ, примерно равной 2, в то время как у обычного водорода относительная атомная масса равна примерно 1). Встречается в малых… … Научно-технический энциклопедический словарь

    Heavy water оксид дейтерия, D2О вода, в которой атомы водорода замещены атомами дейтерия. Тяжелая вода используется как замедлитель в ядерных реакторах. В обычной воде на 5000 частей приходится примерно одна часть тяжелой воды. Термины атомной… … Термины атомной энергетики

    тяжелая вода - Оксид дейтерия, D2О вода, в которой атомы водорода замещены атомами дейтерия. Тяжелая вода используется как замедлитель в ядерных реакторах. В обычной воде на 5000 частей приходится примерно одна часть тяжелой воды.… … Справочник технического переводчика

    D2О, изотопная разновидность воды, в молекулах которой атомы водорода заменены атомами дейтерия. Плотность 1,104 г/см³ (3,98 .С), tпл 3,813 .С, tкип 101,43 .С. Соотношение в природных водах Н:D в среднем 6900:1. На организмы действует… … Большой Энциклопедический словарь

    ТЯЖЕЛАЯ ВОДА - см … Большая политехническая энциклопедия

    тяжелая вода - Встречающаяся в природе изотопная разновидность воды, в состав которой вместо обычного водорода входит его тяжелый изотоп дейтерий … Словарь по географии

М. АДЖИЕВ

Тяжелая вода очень дорога и дефицитна. Однако если удастся найти дешевый и практичный способ ее получения, то области применения этого редкого пока ресурса заметно расширятся. Могут открыться новые страницы в химии, биологии, а это новые материалы, неизвестные соединения, может быть, и неожиданные формы жизни.

Рис. 1.
Молекулы воды прочно связаны друг с другом и образуют устойчивую молекулярную конструкцию, которая сопротивляется любым внешним воздействиям, в частности тепловым. (Именно поэтому, чтобы превратить воду в пар, нужно подвести к ней много тепла). Молекулярная конструкция воды скреплена каркасом из особых квантово-механических связей, названных в 1920 году двумя американскими химиками Латимером и Родебушем водородными. Все аномальные свойства воды, включая необычное поведение при замерзании, объясняются с точки зрения концепции водородных связей.

Вода в природе бывает нескольких «сортов». Обычная, или протиевая (Н 2 О). Тяжелая, или дейтериевая (D 2 O). Сверхтяжелая, или тритиевая (Т 2 О), но ее в природе почти нет. Различается вода и по изотопному составу кислорода. Всего же насчитывается не менее 18 ее изотопных разновидностей.

Если мы откроем водопроводный кран и наберем чайник, то там будет не однородная вода, а ее смесь. При этом дейтериевых «вкраплений» окажется очень немного – примерно 150 граммов на тонну. Получается, что тяжелая вода есть повсюду – в каждой капле! Проблема в том, как ее взять. Ныне во всем мире ее добыча связана с огромными затратами энергии и очень сложным оборудованием.

Однако есть предположение, что на планете Земля возможны такие природные ситуации, когда тяжелая и обычная вода на какое-то время отделяются одна от другой – D 2 O из рассеянного, «растворенного» состояния переходит в концентрированное. Так, может быть, существуют месторождения тяжелой воды? Пока однозначного ответа нет: никто из исследователей этим вопросом прежде не занимался.

А вместе с тем известно, что физико-химические свойства D 2 O совсем иные, чем у Н 2 0 – ее постоянного спутника. Так, температура кипения тяжелой воды +101,4°С, а замерзает она при +3,81°С. Ее плотность на 10 процентов больше, чем у обычной.

Надо также заметить, что происхождение тяжелой воды, по-видимому, сугубо земное – в космосе ее следов не обнаружено. Дейтерий образуется из протия вследствие захвата им нейтрона космического излучения. Мировой океан, ледники, атмосферная влага – вот природные «фабрики» тяжелой воды.

Рис. 2. Зависимость плотности обычной и тяжелой воды от температуры. Разница в плотности одной и другой разновидностей воды превышает 10%, и поэтому возможны условия, когда переход в твердое состояние при охлаждении происходит вначале у тяжелой воды, а затем у обычной. Во всяком случае, физика не запрещает появления участков твердой фазы с повышенным содержанием дейтерия. Такому «тяжелому» льду на диаграмме соответствует заштрихованный участок. Если бы вода была «нормальной», а не аномальной жидкостью, то зависимость плотности от температуры имела бы вид, показанный пунктирной линией.

Итак, поскольку есть заметная разница в плотности между D 2 O и Н 2 О, то именно плотность, а также агрегатное состояние и могут служить наиболее чувствительными критериями в поисках возможных месторождений тяжелой воды – ведь эти критерии связаны с температурой окружающей среды. А как известно, окружающая среда наиболее «контрастна» в высоких широтах планеты.

Но к настоящему времени сложилось мнение, что воды высоких широт бедны дейтерием. Поводом к этому стали результаты исследований проб воды и льда из Большого Медвежьего озера в Канаде и из других северных водоемов. Обнаружились также колебания в содержании дейтерия по сезонам года – зимой, например, в реке Колумбия его меньше, чем летом. Эти отклонения от нормы связывались с особенностями распределения атмосферных осадков, которые, как принято предполагать, «разносят» дейтерий по планете.

Похоже, что никто из исследователей сразу не заметил скрытого противоречия в этом утверждении. Да, атмосферные осадки влияют на распределение дейтерия по водоемам планеты, однако они никак не влияют на глобальный процесс образования дейтерия!

Когда на Севере наступает осень, в реках начинается быстрое остывание водной массы, которое убыстряется под воздействием вечной мерзлоты, одновременно идет ассоциация молекул H 2 O. Наконец, наступает критический момент максимальной плотности – температура воды всюду чуть ниже +4°С. И тогда в придонной зоне на некоторых участках интенсивно намораживается рыхлый подводный лед.

В отличие от обычного льда он не имеет правильной кристаллической решетки, у него иная структура. Центры его кристаллизации различны: камни, коряги и разные неровности, причем не обязательно лежащие на дне и связанные с мерзлым грунтом. Появляется рыхлый лед на реках глубоких, со спокойным – ламинарным – течением.

Подводное ледообразование обычно заканчивается тем, что льдины всплывают на поверхность, хотя в это время никакого другого льда нет. Подводный лед иногда появляется и летом. Возникает вопрос: что это за «вода в воде», которая меняет свое агрегатное состояние, когда установившаяся температура в реке слишком высока для того, чтобы в лед превращалась обычная Н 2 О, чтобы, как говорят физики, произошел фазовый переход?

Можно допустить, что рыхлый лед представляет собой обогащенные концентрации тяжелой воды. Кстати, если это так, то нужно помнить, что тяжелая вода не отличима от обычной, однако потребление ее внутрь организма может вызвать тяжелые отравления. К слову сказать, местные жители высоких широт не употребляют речной лед для приготовления пищи – только озерный лед или снег.

«Механизм» фазового перехода D 2 O в реке очень напоминает тот, что используется химиками в так называемых кристаллизационных колоннах. Только в северной реке «колонна» растянута на сотни километров и не столь контрастна по температурному режиму.

Если же иметь в виду, что через центры кристаллизации в реке за короткое время проходят сотни и тысячи кубических метров воды, из которых превращается в лед – намораживается – пусть тысячная доля процента, то и этого достаточно, чтобы говорить о способности тяжелой воды концентрироваться, то есть образовывать месторождения.

Только присутствием таких концентраций можно объяснить тот доказанный факт, что зимой в северных водоемах процентное содержание дейтерия заметно уменьшается. Да и полярные воды, как показывают пробы, тоже бедны дейтерием, и в Арктике, вполне вероятно, есть районы, где плавают в основном только льдины, обогащенные дейтерием, – ведь рыхлый донный лед появляется первым и тает последним.

Больше того, как показали исследования, ледники и льды высоких широт в целом богаче тяжелыми изотопами, чем воды, омывающие льды. Например, в Южной Гренландии, в районе станции «Дай-3», выявлены изотопные аномалии на поверхности ледников, и происхождение таких аномалий пока не объяснено. Значит, могут встретиться и льдины, обогащенные дейтерием. Дело, как говорится, за малым – нужно найти эти пока еще гипотетические месторождения тяжелой воды.

М. АДЖИЕВ, географ.

Источники информации:

  1. Л. Кульский, В. Даль, Л. Ленчина. Вода знакомая и загадочная .
    – К.: «Радянська школа», 1982.
  2. Наука и жизнь №10, 1988.